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EXECUTION AND REASONING

I ACL2 development is geared towards:
I Efficient execution
I Effective reasoning

I Abstract stobjs, introduced in ACL2 Version 5.0, are also in
this tradition.
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RUNNING EXAMPLE: Y86

I ISA Model: y86

I 32-bit architecture
I Academic simplification of the x86
I Supporting Materials:
books/models/y86/y86-two-level-abs

I We benefit from abstract stobjs in our x86 model too.
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GOAL OF THIS TALK

I Will not be talking about the logical foundations of abstract
stobjs today...

I (For that, see the Essay on the Correctness of Abstract
Stobjs in ACL2 source file other-events.lisp.)

I Will introduce abstract stobjs to the ACL2 community so
that users can consider using this feature in their proof
developments
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Y86 MODEL IN ACL2
I State: represented by a concrete stobj called x86-32$c

Component Description
general-purpose
registers

array of length 8; each el-
ement is a 32-bit unsigned
number

instruction
pointer

32-bit unsigned number

flags register 32-bit unsigned number
physical memory a space-efficient implemen-

tation of 4 GB physical mem-
ory
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Y86 MEMORY MODEL

mem-table mem-array

.....................

...

...

.

.

.

...

...

Actual byte-addressable memory: 

Block 0

Block 1

Block (28  -2)

Points to the block number to

be allocated next

Stores block numbers

bytes are in 16 MB Blocks

0

(28 -1)

32-bit Physical Address

||

Block (28  -1)

02331

Blocks are allocated on demand.

Index to mem-table Offset into a mem-array block

mem-array-next-addr

.....................

[FMCAD’12] Hunt & Kaufmann: A Formal Model of a Large Memory that Supports Efficient Execution
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Y86 STATE RECOGNIZER

I Stobj recognizer: a simple structural check for the stobj
fields

I What does it mean to have a good y86 state?
Stobj recognizer
+
an invariant stating that the space-efficient implementation
of the memory gives a well-formed y86 memory

I Have to carry around the complexities of the
space-efficient memory model during proofs...
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ABSTRACT STOBJS

An abstract stobj provides a simple logical interface to a
corresponding concrete stobj.

I Fast execution: provided by the previously-defined
concrete stobj

I Effective reasoning: provided by an alternate (logical)
representation of the concrete stobj
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PROOF OBLIGATIONS

Abstract 

layer

Concrete

layer

Correspondence

st$c0 st$c1

st0 st1

f$c

f$a

Three kinds of proof obligations need to be discharged:

1. Correspondence Theorems
2. Preservation Theorems
3. Guard Theorems

Important: ACL2 prints these proof obligations for the user.
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INTRODUCING ABSTRACT STOBJS IN ACL2

1. Introduce a concrete stobj.
2. Define functions that operate on the fields of the concrete

stobj (:EXEC functions).
3. Define a recognizer function and a creator function for the

abstract stobj.
4. Define the functions that will operate on the abstract stobj

(:LOGIC functions).
5. Define the correspondence predicate.
6. Discharge the proof obligations needed to introduce a

defabsstobj event.
7. Introduce the defabsstobj event into ACL2.
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INTRODUCING ABSTRACT STOBJS IN ACL2

2. Define functions that operate on the fields of the concrete
stobj (:EXEC functions).

(defun !mem$ci (i v x86-32$c)
;; Declare statement elided.

(let* ((i-top (ash i (- *2^x-byte-pseudo-page*)))
(addr (mem-tablei i-top x86-32$c)))

(mv-let (addr x86-32$c)
(cond ((eql addr 1) ; page is not present

(add-page-x86-32$c i-top x86-32$c))
(t (mv addr x86-32$c)))

(!mem-arrayi (logior addr (logand *2^24-1* i))
v
x86-32$c))))

17/39



INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

INTRODUCING ABSTRACT STOBJS IN ACL2

3. Define a recognizer function and a creator function for the
abstract stobj.

We choose a sparse alternative representation for the y86
memory: records. (books/defexec/other-apps/records)
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INTRODUCING ABSTRACT STOBJS IN ACL2

4. Define the functions that will operate on the abstract stobj
(:LOGIC functions).

(defun !mem$ai (i v x86-32)
;; Declare statement elided.

(update-nth *memi*
(s i v (nth *memi* x86-32))
x86-32))
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INTRODUCING ABSTRACT STOBJS IN ACL2

5. Define the correspondence predicate.

(defun corr (conc abs)
;; Declare statement elided.

(and (x86-32$cp conc)
(x86-32$ap abs)
(equal (nth *rgfi* conc) (nth *rgfi* abs))
(equal (nth *flg* conc) (nth *flg* abs))
...
(corr-mem conc (nth *memi* abs))))
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INTRODUCING ABSTRACT STOBJS IN ACL2

6. Discharge the proof obligations needed to introduce a
defabsstobj event.

Typically, just execute the defabsstobj event, paste the
resulting proof obligations (defthm events) into your file, and
prove them in the normal way.
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INTRODUCING ABSTRACT STOBJS IN ACL2

7. Introduce the defabsstobj event into ACL2.
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INTRODUCING ABSTRACT STOBJS IN ACL2

(defabsstobj x86-32
:concrete x86-32$c
:recognizer (x86-32p :logic x86-32$ap :exec x86-32$cp-pre)
:creator (create-x86-32 :logic create-x86-32$a

:exec create-x86-32$c)
:corr-fn corr
:exports ((rgfi :logic rgf$ai :exec rgf$ci)

(!rgfi :logic !rgf$ai :exec !rgf$ci)
(rip :logic rip$a :exec rip$c)
(!rip :logic !rip$a :exec !rip$c)
(flg :logic flg$a :exec flg$c)
(!flg :logic !flg$a :exec !flg$c)

...
(memi :logic mem$ai :exec mem$ci)
(!memi :logic !mem$ai :exec !mem$ci
:protect t)))
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SIMPLIFIED REASONING

Memory read-over-write theorem:

(defthm read-write
(implies (and (x86-32$cp x86-32$c)

(integerp i)
(<= 0 i)
(< i *mem-size-in-bytes*)
(integerp j)
(<= 0 j)
(< j *mem-size-in-bytes*)
(n08p v))

(equal (mem$ci j (!mem$ci i v x86-32$c))
(if (equal i j)

v
(mem$ci j x86-32$c)))))
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SIMPLIFIED REASONING

Memory read-over-write theorem without abstract stobjs:

(defthm read-write
(implies (and (x86-32$cp x86-32$c)

(integerp i)
(<= 0 i)
(< i *mem-size-in-bytes*)
(integerp j)
(<= 0 j)
(< j *mem-size-in-bytes*)
(n08p v))

(equal (mem$ci j (!mem$ci i v x86-32$c))
(if (equal i j)

v
(mem$ci j x86-32$c)))))
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SIMPLIFIED REASONING: ELIMINATING HYPOTHESES

Abstract stobjs allow us to prove the following read-over-write
theorem instead:

(defthm memi-!memi
(equal (memi i (!memi j v x86-32))

(if (equal i j)
(or v 0)
(memi i x86-32))))

Removing hypotheses from theorems:
I results in stronger (more general) rules, and
I speeds up the ACL2 rewriter during proofs.
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EXECUTION IN ACL2

I We use guards extensively to do processor modeling.

I While executing functions, ACL2 uses guards to check the
legality of each call made in the ACL2 loop.

I All functions that take the concrete stobj as input have
x86-32$cp as a guard.

I x86-32$cp is a complicated predicate that makes
guard-checking slow.

I In the case of abstract stobjs:

I We prove that the recognizer always holds for the abstract
stobj returned by the updater functions.

I Optimization: calls of x86-32p evaluate instantly to T.
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PROOF BY SYMBOLIC EXECUTION

I All elements of x86-32$c are logically represented as
linear lists.

I Concrete stobjs give us an enormous logical representation
of the state because of the large memory arrays.

I Every read/write operation involving x86-32$c requires
linear traversals.

I Instead, we use sparse data structures — records — to
model the memory.

I Initial representation of memory is now NIL, as opposed
to large lists of zeroes in the concrete stobj representation.
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PROOF BY SYMBOLIC EXECUTION

I We get a smaller processor state that is amenable to proof
by symbolic execution.

I Abstract stobjs enable the use of GL (books/centaur/gl)
to do automatic proofs about some non-trivial y86 binary
programs.

I For an example, see
books/models/y86/y86-two-level-abs/examples.
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LAYERED MODELING STRATEGY

Abstract stobjs avoid the need of a trade-off between reasoning and execution
efficiency.
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CONCLUSION

In brief, abstract stobjs:

I make processor modeling easier by introducing
abstraction — a layered model is more manageable and
robust;

I make reasoning about big models easier through
elimination of hypotheses; and

I support efficiency of concrete execution (with faster
guard checking) and symbolic execution (by presenting
sparse structures like records instead of long lists).

See :DOC defabsstobj.
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