
INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

Abstract Stobjs and Their Application to ISA
Modeling

Shilpi Goel
Warren A. Hunt, Jr.

Matt Kaufmann

The University of Texas at Austin

30th May, 2013

1/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

OUTLINE

INTRODUCTION

ABSTRACT STOBJS

Proof Obligations
Introducing Abstract Stobjs in ACL2

BENEFITS

Simplified Reasoning
Execution in ACL2
Proof by Symbolic Execution
Layered Modeling Strategy

CONCLUSION

2/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

OUTLINE

INTRODUCTION

ABSTRACT STOBJS

Proof Obligations
Introducing Abstract Stobjs in ACL2

BENEFITS

Simplified Reasoning
Execution in ACL2
Proof by Symbolic Execution
Layered Modeling Strategy

CONCLUSION

3/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

EXECUTION AND REASONING

I ACL2 development is geared towards:
I Efficient execution
I Effective reasoning

I Abstract stobjs, introduced in ACL2 Version 5.0, are also in
this tradition.

4/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

EXECUTION AND REASONING

I ACL2 development is geared towards:
I Efficient execution
I Effective reasoning

I Abstract stobjs, introduced in ACL2 Version 5.0, are also in
this tradition.

4/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

RUNNING EXAMPLE: Y86

I ISA Model: y86

I 32-bit architecture
I Academic simplification of the x86
I Supporting Materials:
books/models/y86/y86-two-level-abs

I We benefit from abstract stobjs in our x86 model too.

5/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

RUNNING EXAMPLE: Y86

I ISA Model: y86

I 32-bit architecture
I Academic simplification of the x86
I Supporting Materials:
books/models/y86/y86-two-level-abs

I We benefit from abstract stobjs in our x86 model too.

5/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

GOAL OF THIS TALK

I Will not be talking about the logical foundations of abstract
stobjs today...

I (For that, see the Essay on the Correctness of Abstract
Stobjs in ACL2 source file other-events.lisp.)

I Will introduce abstract stobjs to the ACL2 community so
that users can consider using this feature in their proof
developments

6/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

GOAL OF THIS TALK

I Will not be talking about the logical foundations of abstract
stobjs today...

I (For that, see the Essay on the Correctness of Abstract
Stobjs in ACL2 source file other-events.lisp.)

I Will introduce abstract stobjs to the ACL2 community so
that users can consider using this feature in their proof
developments

6/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

Y86 MODEL IN ACL2
I State: represented by a concrete stobj called x86-32$c

Component Description
general-purpose
registers

array of length 8; each el-
ement is a 32-bit unsigned
number

instruction
pointer

32-bit unsigned number

flags register 32-bit unsigned number
physical memory a space-efficient implemen-

tation of 4 GB physical mem-
ory

7/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

Y86 MEMORY MODEL

mem-table mem-array

.....................

...

...

.

.

.

...

...

Actual byte-addressable memory:

Block 0

Block 1

Block (28 -2)

Points to the block number to

be allocated next

Stores block numbers

bytes are in 16 MB Blocks

0

(28 -1)

32-bit Physical Address

||

Block (28 -1)

02331

Blocks are allocated on demand.

Index to mem-table Offset into a mem-array block

mem-array-next-addr

.....................

[FMCAD’12] Hunt & Kaufmann: A Formal Model of a Large Memory that Supports Efficient Execution

8/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

Y86 STATE RECOGNIZER

I Stobj recognizer: a simple structural check for the stobj
fields

I What does it mean to have a good y86 state?
Stobj recognizer
+
an invariant stating that the space-efficient implementation
of the memory gives a well-formed y86 memory

I Have to carry around the complexities of the
space-efficient memory model during proofs...

9/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

Y86 STATE RECOGNIZER

I Stobj recognizer: a simple structural check for the stobj
fields

I What does it mean to have a good y86 state?

Stobj recognizer
+
an invariant stating that the space-efficient implementation
of the memory gives a well-formed y86 memory

I Have to carry around the complexities of the
space-efficient memory model during proofs...

9/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

Y86 STATE RECOGNIZER

I Stobj recognizer: a simple structural check for the stobj
fields

I What does it mean to have a good y86 state?
Stobj recognizer
+
an invariant stating that the space-efficient implementation
of the memory gives a well-formed y86 memory

I Have to carry around the complexities of the
space-efficient memory model during proofs...

9/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

Y86 STATE RECOGNIZER

I Stobj recognizer: a simple structural check for the stobj
fields

I What does it mean to have a good y86 state?
Stobj recognizer
+
an invariant stating that the space-efficient implementation
of the memory gives a well-formed y86 memory

I Have to carry around the complexities of the
space-efficient memory model during proofs...

9/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

ABSTRACT STOBJS

An abstract stobj provides a simple logical interface to a
corresponding concrete stobj.

I Fast execution: provided by the previously-defined
concrete stobj

I Effective reasoning: provided by an alternate (logical)
representation of the concrete stobj

10/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

ABSTRACT STOBJS

An abstract stobj provides a simple logical interface to a
corresponding concrete stobj.

I Fast execution: provided by the previously-defined
concrete stobj

I Effective reasoning: provided by an alternate (logical)
representation of the concrete stobj

10/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

ABSTRACT STOBJS

An abstract stobj provides a simple logical interface to a
corresponding concrete stobj.

I Fast execution: provided by the previously-defined
concrete stobj

I Effective reasoning: provided by an alternate (logical)
representation of the concrete stobj

10/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

OUTLINE

INTRODUCTION

ABSTRACT STOBJS

Proof Obligations
Introducing Abstract Stobjs in ACL2

BENEFITS

Simplified Reasoning
Execution in ACL2
Proof by Symbolic Execution
Layered Modeling Strategy

CONCLUSION

11/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

OUTLINE

INTRODUCTION

ABSTRACT STOBJS

Proof Obligations
Introducing Abstract Stobjs in ACL2

BENEFITS

Simplified Reasoning
Execution in ACL2
Proof by Symbolic Execution
Layered Modeling Strategy

CONCLUSION

12/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

PROOF OBLIGATIONS

Abstract

layer

Concrete

layer

Correspondence

st$c0 st$c1

st0 st1

f$c

f$a

Three kinds of proof obligations need to be discharged:

1. Correspondence Theorems
2. Preservation Theorems
3. Guard Theorems

Important: ACL2 prints these proof obligations for the user.

13/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

PROOF OBLIGATIONS

Abstract

layer

Concrete

layer

Correspondence

st$c0 st$c1

st0 st1

f$c

f$a

Three kinds of proof obligations need to be discharged:

1. Correspondence Theorems
2. Preservation Theorems
3. Guard Theorems

Important: ACL2 prints these proof obligations for the user.
13/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

OUTLINE

INTRODUCTION

ABSTRACT STOBJS

Proof Obligations
Introducing Abstract Stobjs in ACL2

BENEFITS

Simplified Reasoning
Execution in ACL2
Proof by Symbolic Execution
Layered Modeling Strategy

CONCLUSION

14/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

INTRODUCING ABSTRACT STOBJS IN ACL2

1. Introduce a concrete stobj.
2. Define functions that operate on the fields of the concrete

stobj (:EXEC functions).
3. Define a recognizer function and a creator function for the

abstract stobj.
4. Define the functions that will operate on the abstract stobj

(:LOGIC functions).
5. Define the correspondence predicate.
6. Discharge the proof obligations needed to introduce a

defabsstobj event.
7. Introduce the defabsstobj event into ACL2.

15/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

INTRODUCING ABSTRACT STOBJS IN ACL2

1. Introduce a concrete stobj.

16/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

INTRODUCING ABSTRACT STOBJS IN ACL2

2. Define functions that operate on the fields of the concrete
stobj (:EXEC functions).

(defun !mem$ci (i v x86-32$c)
;; Declare statement elided.

(let* ((i-top (ash i (- *2^x-byte-pseudo-page*)))
(addr (mem-tablei i-top x86-32$c)))

(mv-let (addr x86-32$c)
(cond ((eql addr 1) ; page is not present

(add-page-x86-32$c i-top x86-32$c))
(t (mv addr x86-32$c)))

(!mem-arrayi (logior addr (logand *2^24-1* i))
v
x86-32$c))))

17/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

INTRODUCING ABSTRACT STOBJS IN ACL2

3. Define a recognizer function and a creator function for the
abstract stobj.

We choose a sparse alternative representation for the y86
memory: records. (books/defexec/other-apps/records)

18/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

INTRODUCING ABSTRACT STOBJS IN ACL2

4. Define the functions that will operate on the abstract stobj
(:LOGIC functions).

(defun !mem$ai (i v x86-32)
;; Declare statement elided.

(update-nth *memi*
(s i v (nth *memi* x86-32))
x86-32))

19/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

INTRODUCING ABSTRACT STOBJS IN ACL2

5. Define the correspondence predicate.

(defun corr (conc abs)
;; Declare statement elided.

(and (x86-32$cp conc)
(x86-32$ap abs)
(equal (nth *rgfi* conc) (nth *rgfi* abs))
(equal (nth *flg* conc) (nth *flg* abs))
...
(corr-mem conc (nth *memi* abs))))

20/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

INTRODUCING ABSTRACT STOBJS IN ACL2

6. Discharge the proof obligations needed to introduce a
defabsstobj event.

Typically, just execute the defabsstobj event, paste the
resulting proof obligations (defthm events) into your file, and
prove them in the normal way.

21/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

INTRODUCING ABSTRACT STOBJS IN ACL2

7. Introduce the defabsstobj event into ACL2.

22/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

INTRODUCING ABSTRACT STOBJS IN ACL2

(defabsstobj x86-32
:concrete x86-32$c
:recognizer (x86-32p :logic x86-32$ap :exec x86-32$cp-pre)
:creator (create-x86-32 :logic create-x86-32$a

:exec create-x86-32$c)
:corr-fn corr
:exports ((rgfi :logic rgf$ai :exec rgf$ci)

(!rgfi :logic !rgf$ai :exec !rgf$ci)
(rip :logic rip$a :exec rip$c)
(!rip :logic !rip$a :exec !rip$c)
(flg :logic flg$a :exec flg$c)
(!flg :logic !flg$a :exec !flg$c)

...
(memi :logic mem$ai :exec mem$ci)
(!memi :logic !mem$ai :exec !mem$ci
:protect t)))

23/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

INTRODUCING ABSTRACT STOBJS IN ACL2

1. Introduce a concrete stobj.
2. Define functions that operate on the fields of the concrete

stobj (:EXEC functions).
3. Define a recognizer function and a creator function for the

abstract stobj.
4. Define the functions that will operate on the abstract stobj

(:LOGIC functions).
5. Define the correspondence predicate.
6. Discharge the proof obligations needed to introduce a

defabsstobj event.
7. Introduce the defabsstobj event into ACL2.

24/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

OUTLINE

INTRODUCTION

ABSTRACT STOBJS

Proof Obligations
Introducing Abstract Stobjs in ACL2

BENEFITS

Simplified Reasoning
Execution in ACL2
Proof by Symbolic Execution
Layered Modeling Strategy

CONCLUSION

25/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

OUTLINE

INTRODUCTION

ABSTRACT STOBJS

Proof Obligations
Introducing Abstract Stobjs in ACL2

BENEFITS

Simplified Reasoning
Execution in ACL2
Proof by Symbolic Execution
Layered Modeling Strategy

CONCLUSION

26/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

SIMPLIFIED REASONING

Memory read-over-write theorem:

(defthm read-write
(implies (and (x86-32$cp x86-32$c)

(integerp i)
(<= 0 i)
(< i *mem-size-in-bytes*)
(integerp j)
(<= 0 j)
(< j *mem-size-in-bytes*)
(n08p v))

(equal (mem$ci j (!mem$ci i v x86-32$c))
(if (equal i j)

v
(mem$ci j x86-32$c)))))

27/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

SIMPLIFIED REASONING

Memory read-over-write theorem without abstract stobjs:

(defthm read-write
(implies (and (x86-32$cp x86-32$c)

(integerp i)
(<= 0 i)
(< i *mem-size-in-bytes*)
(integerp j)
(<= 0 j)
(< j *mem-size-in-bytes*)
(n08p v))

(equal (mem$ci j (!mem$ci i v x86-32$c))
(if (equal i j)

v
(mem$ci j x86-32$c)))))

28/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

SIMPLIFIED REASONING: ELIMINATING HYPOTHESES

Abstract stobjs allow us to prove the following read-over-write
theorem instead:

(defthm memi-!memi
(equal (memi i (!memi j v x86-32))

(if (equal i j)
(or v 0)
(memi i x86-32))))

Removing hypotheses from theorems:
I results in stronger (more general) rules, and
I speeds up the ACL2 rewriter during proofs.

29/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

SIMPLIFIED REASONING: ELIMINATING HYPOTHESES

Abstract stobjs allow us to prove the following read-over-write
theorem instead:

(defthm memi-!memi
(equal (memi i (!memi j v x86-32))

(if (equal i j)
(or v 0)
(memi i x86-32))))

Removing hypotheses from theorems:
I results in stronger (more general) rules, and

I speeds up the ACL2 rewriter during proofs.

29/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

SIMPLIFIED REASONING: ELIMINATING HYPOTHESES

Abstract stobjs allow us to prove the following read-over-write
theorem instead:

(defthm memi-!memi
(equal (memi i (!memi j v x86-32))

(if (equal i j)
(or v 0)
(memi i x86-32))))

Removing hypotheses from theorems:
I results in stronger (more general) rules, and
I speeds up the ACL2 rewriter during proofs.

29/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

OUTLINE

INTRODUCTION

ABSTRACT STOBJS

Proof Obligations
Introducing Abstract Stobjs in ACL2

BENEFITS

Simplified Reasoning
Execution in ACL2
Proof by Symbolic Execution
Layered Modeling Strategy

CONCLUSION

30/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

EXECUTION IN ACL2

I We use guards extensively to do processor modeling.

I While executing functions, ACL2 uses guards to check the
legality of each call made in the ACL2 loop.

I All functions that take the concrete stobj as input have
x86-32$cp as a guard.

I x86-32$cp is a complicated predicate that makes
guard-checking slow.

I In the case of abstract stobjs:

I We prove that the recognizer always holds for the abstract
stobj returned by the updater functions.

I Optimization: calls of x86-32p evaluate instantly to T.

31/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

EXECUTION IN ACL2

I We use guards extensively to do processor modeling.

I While executing functions, ACL2 uses guards to check the
legality of each call made in the ACL2 loop.

I All functions that take the concrete stobj as input have
x86-32$cp as a guard.

I x86-32$cp is a complicated predicate that makes
guard-checking slow.

I In the case of abstract stobjs:

I We prove that the recognizer always holds for the abstract
stobj returned by the updater functions.

I Optimization: calls of x86-32p evaluate instantly to T.

31/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

EXECUTION IN ACL2

I We use guards extensively to do processor modeling.

I While executing functions, ACL2 uses guards to check the
legality of each call made in the ACL2 loop.

I All functions that take the concrete stobj as input have
x86-32$cp as a guard.

I x86-32$cp is a complicated predicate that makes
guard-checking slow.

I In the case of abstract stobjs:

I We prove that the recognizer always holds for the abstract
stobj returned by the updater functions.

I Optimization: calls of x86-32p evaluate instantly to T.

31/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

EXECUTION IN ACL2

I We use guards extensively to do processor modeling.

I While executing functions, ACL2 uses guards to check the
legality of each call made in the ACL2 loop.

I All functions that take the concrete stobj as input have
x86-32$cp as a guard.

I x86-32$cp is a complicated predicate that makes
guard-checking slow.

I In the case of abstract stobjs:

I We prove that the recognizer always holds for the abstract
stobj returned by the updater functions.

I Optimization: calls of x86-32p evaluate instantly to T.

31/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

EXECUTION IN ACL2

I We use guards extensively to do processor modeling.

I While executing functions, ACL2 uses guards to check the
legality of each call made in the ACL2 loop.

I All functions that take the concrete stobj as input have
x86-32$cp as a guard.

I x86-32$cp is a complicated predicate that makes
guard-checking slow.

I In the case of abstract stobjs:

I We prove that the recognizer always holds for the abstract
stobj returned by the updater functions.

I Optimization: calls of x86-32p evaluate instantly to T.

31/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

EXECUTION IN ACL2

I We use guards extensively to do processor modeling.

I While executing functions, ACL2 uses guards to check the
legality of each call made in the ACL2 loop.

I All functions that take the concrete stobj as input have
x86-32$cp as a guard.

I x86-32$cp is a complicated predicate that makes
guard-checking slow.

I In the case of abstract stobjs:

I We prove that the recognizer always holds for the abstract
stobj returned by the updater functions.

I Optimization: calls of x86-32p evaluate instantly to T.

31/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

OUTLINE

INTRODUCTION

ABSTRACT STOBJS

Proof Obligations
Introducing Abstract Stobjs in ACL2

BENEFITS

Simplified Reasoning
Execution in ACL2
Proof by Symbolic Execution
Layered Modeling Strategy

CONCLUSION

32/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

PROOF BY SYMBOLIC EXECUTION

I All elements of x86-32$c are logically represented as
linear lists.

I Concrete stobjs give us an enormous logical representation
of the state because of the large memory arrays.

I Every read/write operation involving x86-32$c requires
linear traversals.

I Instead, we use sparse data structures — records — to
model the memory.

I Initial representation of memory is now NIL, as opposed
to large lists of zeroes in the concrete stobj representation.

33/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

PROOF BY SYMBOLIC EXECUTION

I All elements of x86-32$c are logically represented as
linear lists.

I Concrete stobjs give us an enormous logical representation
of the state because of the large memory arrays.

I Every read/write operation involving x86-32$c requires
linear traversals.

I Instead, we use sparse data structures — records — to
model the memory.

I Initial representation of memory is now NIL, as opposed
to large lists of zeroes in the concrete stobj representation.

33/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

PROOF BY SYMBOLIC EXECUTION

I All elements of x86-32$c are logically represented as
linear lists.

I Concrete stobjs give us an enormous logical representation
of the state because of the large memory arrays.

I Every read/write operation involving x86-32$c requires
linear traversals.

I Instead, we use sparse data structures — records — to
model the memory.

I Initial representation of memory is now NIL, as opposed
to large lists of zeroes in the concrete stobj representation.

33/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

PROOF BY SYMBOLIC EXECUTION

I All elements of x86-32$c are logically represented as
linear lists.

I Concrete stobjs give us an enormous logical representation
of the state because of the large memory arrays.

I Every read/write operation involving x86-32$c requires
linear traversals.

I Instead, we use sparse data structures — records — to
model the memory.

I Initial representation of memory is now NIL, as opposed
to large lists of zeroes in the concrete stobj representation.

33/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

PROOF BY SYMBOLIC EXECUTION

I All elements of x86-32$c are logically represented as
linear lists.

I Concrete stobjs give us an enormous logical representation
of the state because of the large memory arrays.

I Every read/write operation involving x86-32$c requires
linear traversals.

I Instead, we use sparse data structures — records — to
model the memory.

I Initial representation of memory is now NIL, as opposed
to large lists of zeroes in the concrete stobj representation.

33/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

PROOF BY SYMBOLIC EXECUTION

I We get a smaller processor state that is amenable to proof
by symbolic execution.

I Abstract stobjs enable the use of GL (books/centaur/gl)
to do automatic proofs about some non-trivial y86 binary
programs.

I For an example, see
books/models/y86/y86-two-level-abs/examples.

34/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

PROOF BY SYMBOLIC EXECUTION

I We get a smaller processor state that is amenable to proof
by symbolic execution.

I Abstract stobjs enable the use of GL (books/centaur/gl)
to do automatic proofs about some non-trivial y86 binary
programs.

I For an example, see
books/models/y86/y86-two-level-abs/examples.

34/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

PROOF BY SYMBOLIC EXECUTION

I We get a smaller processor state that is amenable to proof
by symbolic execution.

I Abstract stobjs enable the use of GL (books/centaur/gl)
to do automatic proofs about some non-trivial y86 binary
programs.

I For an example, see
books/models/y86/y86-two-level-abs/examples.

34/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

OUTLINE

INTRODUCTION

ABSTRACT STOBJS

Proof Obligations
Introducing Abstract Stobjs in ACL2

BENEFITS

Simplified Reasoning
Execution in ACL2
Proof by Symbolic Execution
Layered Modeling Strategy

CONCLUSION

35/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

LAYERED MODELING STRATEGY

Abstract stobjs avoid the need of a trade-off between reasoning and execution
efficiency.

36/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

OUTLINE

INTRODUCTION

ABSTRACT STOBJS

Proof Obligations
Introducing Abstract Stobjs in ACL2

BENEFITS

Simplified Reasoning
Execution in ACL2
Proof by Symbolic Execution
Layered Modeling Strategy

CONCLUSION

37/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

CONCLUSION

In brief, abstract stobjs:

I make processor modeling easier by introducing
abstraction — a layered model is more manageable and
robust;

I make reasoning about big models easier through
elimination of hypotheses; and

I support efficiency of concrete execution (with faster
guard checking) and symbolic execution (by presenting
sparse structures like records instead of long lists).

See :DOC defabsstobj.

38/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

CONCLUSION

In brief, abstract stobjs:

I make processor modeling easier by introducing
abstraction — a layered model is more manageable and
robust;

I make reasoning about big models easier through
elimination of hypotheses; and

I support efficiency of concrete execution (with faster
guard checking) and symbolic execution (by presenting
sparse structures like records instead of long lists).

See :DOC defabsstobj.

38/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

CONCLUSION

In brief, abstract stobjs:

I make processor modeling easier by introducing
abstraction — a layered model is more manageable and
robust;

I make reasoning about big models easier through
elimination of hypotheses; and

I support efficiency of concrete execution (with faster
guard checking) and symbolic execution (by presenting
sparse structures like records instead of long lists).

See :DOC defabsstobj.

38/39

INTRODUCTION ABSTRACT STOBJS BENEFITS CONCLUSION

Abstract Stobjs and Their Application to ISA
Modeling

Shilpi Goel
Warren A. Hunt, Jr.

Matt Kaufmann

The University of Texas at Austin

30th May, 2013

39/39

	Introduction
	Abstract Stobjs
	Proof Obligations
	Introducing Abstract Stobjs in ACL2

	Benefits
	Simplified Reasoning
	Execution in ACL2
	Proof by Symbolic Execution
	Layered Modeling Strategy

	Conclusion

