
CPP 2020

Shilpi Goel, Anna Slobodova, Rob Sumners, & Sol Swords
{shilpi,anna,rsumners,sswords}@centtech.com

Verifying x86 Instruction
Implementations

Formal Verif ication Team @ Centaur Technology

2

Goal

• Broad Verification Objective: prove that Centaur’s processors
correctly implement the x86 ISA.

- Verification of all parts of the processor and microcode.

2

Goal

• Broad Verification Objective: prove that Centaur’s processors
correctly implement the x86 ISA.

- Verification of all parts of the processor and microcode.

• Focus of this Talk: methodology for proving that Centaur’s
processors execute an x86 instruction correctly.

- Instruction decoding.

- Translating a legal instruction to corresponding micro-
operations (uops).

- Executing these uops.

Bytes

Instruction Cache

100111001...

Execution of an x86 Instruction

Bytes

SHRD [RCX], RDX, 16

Instruction Cache

100111001...

Execution of an x86 Instruction

Bytes

state

DECODE

SHRD [RCX], RDX, 16

Instruction Cache

100111001...

Execution of an x86 Instruction

Decode
Exception

prefixes opcode
bytes

source/
destination

immediate
data

Instruction Structures

Bytes

state

DECODE

SHRD [RCX], RDX, 16

Instruction Cache

100111001...

Execution of an x86 Instruction

Decode
Exception

prefixes opcode
bytes

source/
destination

immediate
data

Instruction Structures

Bytes

XLATE

trap
address

prelude
uops

misc.
state

state

DECODE

SHRD [RCX], RDX, 16

Instruction Cache

100111001...

Execution of an x86 Instruction

Decode
Exception

prefixes opcode
bytes

source/
destination

immediate
data

Instruction Structures

Bytes

XLATE

trap
address

prelude
uops

misc.
state

uLD G2, [RCX]
uMV G3, 16

state

DECODE

SHRD [RCX], RDX, 16

Instruction Cache

100111001...

Execution of an x86 Instruction

Decode
Exception

prefixes opcode
bytes

source/
destination

immediate
data

Instruction Structures

Bytes

1010110...
0110110...
0011001...

...
Microcode ROM

XLATE

trap
address

prelude
uops

misc.
state

uLD G2, [RCX]
uMV G3, 16

state

DECODE

SHRD [RCX], RDX, 16

Instruction Cache

100111001...

Execution of an x86 Instruction

Decode
Exception

prefixes opcode
bytes

source/
destination

immediate
data

Instruction Structures

Bytes

1010110...
0110110...
0011001...

...
Microcode ROM

XLATE

trap
address

prelude
uops

misc.
state

UCODEUSEQ

microcode
uops

uLD G2, [RCX]
uMV G3, 16

uAND G3, G3, 63
uJE G3, 0, ent_nop
uSHR G7, G2, G3
...

state

DECODE

SHRD [RCX], RDX, 16

Instruction Cache

100111001...

Execution of an x86 Instruction

Decode
Exception

prefixes opcode
bytes

source/
destination

immediate
data

Instruction Structures

Bytes

1010110...
0110110...
0011001...

...
Microcode ROM

XLATE

trap
address

prelude
uops

misc.
state

UCODEUSEQ

microcode
uops

ExecUnit Op Dst Srcs Size ...

Uops

ExecUnit Op Dst Srcs Size ...

ExecUnit Op Dst Srcs Size ...

uLD G2, [RCX]
uMV G3, 16

uAND G3, G3, 63
uJE G3, 0, ent_nop
uSHR G7, G2, G3
...

state

DECODE

SHRD [RCX], RDX, 16

Instruction Cache

100111001...

Execution of an x86 Instruction

Decode
Exception

prefixes opcode
bytes

source/
destination

immediate
data

Instruction Structures

Bytes

1010110...
0110110...
0011001...

...
Microcode ROM

XLATE

trap
address

prelude
uops

misc.
state

UCODEUSEQ

microcode
uops

ExecUnit Op Dst Srcs Size ...

Uops

ExecUnit Op Dst Srcs Size ...

ExecUnit Op Dst Srcs Size ...

Scheduler,
Load/Store

EXECEXEC

Caches
Registers

uLD G2, [RCX]
uMV G3, 16

uAND G3, G3, 63
uJE G3, 0, ent_nop
uSHR G7, G2, G3
...

state

DECODE

SHRD [RCX], RDX, 16

Instruction Cache

100111001...

Execution of an x86 Instruction

Overview

x86 RTL in
SystemVerilog

DECODE

UCODE

XLATE
Scheduler,
Load/Store

EXECEXECEXEC
USEQ

Overview

x86 RTL in
SystemVerilog

DECODE

UCODE

XLATE
Scheduler,
Load/Store

EXECEXECEXEC

ACL2/VL/SV

USEQ

Overview

x86 RTL in
SystemVerilog

DECODE

UCODE

XLATE
Scheduler,
Load/Store

EXECEXECEXEC

ACL2/VL/SV

USEQ

SV-DECODE SV-EXEC
Design FunctionsSV-UCODE

SV-XLATE

SV-USEQ SV-EXECSV-EXEC

Overview

x86 RTL in
SystemVerilog

DECODE

UCODE

XLATE
Scheduler,
Load/Store

EXECEXECEXEC

ACL2/VL/SV

USEQ

SV-DECODE SV-EXEC
Design FunctionsSV-UCODE

SV-XLATE

SV-USEQ SV-EXECSV-EXEC

uop specs

exec-correctness

...
uAND-spec == uAND
uJE-spec == uJE
uSHR-spec == uSHR
...

Overview

x86 RTL in
SystemVerilog

DECODE

UCODE

XLATE
Scheduler,
Load/Store

EXECEXECEXEC

ACL2/VL/SV

x86isa Modelx86-decode
inst.lst

x86-exec

USEQ

SV-DECODE SV-EXEC
Design FunctionsSV-UCODE

SV-XLATE

SV-USEQ SV-EXECSV-EXEC

uop specs

exec-correctness

...
uAND-spec == uAND
uJE-spec == uJE
uSHR-spec == uSHR
...

Overview

x86 RTL in
SystemVerilog

DECODE

UCODE

XLATE
Scheduler,
Load/Store

EXECEXECEXEC

ACL2/VL/SV

x86isa Modelx86-decode
inst.lst

x86-exec

USEQ

SV-DECODE SV-EXEC
Design FunctionsSV-UCODE

SV-XLATE

SV-USEQ SV-EXECSV-EXEC

decode-
correctness

uop specs

exec-correctness

...
uAND-spec == uAND
uJE-spec == uJE
uSHR-spec == uSHR
...

SHRD-decode-spec
==
..111110101100..

 shrd-opcode

Overview

x86 RTL in
SystemVerilog

DECODE

UCODE

XLATE
Scheduler,
Load/Store

EXECEXECEXEC

ACL2/VL/SV

x86isa Modelx86-decode
inst.lst

x86-exec

USEQ

Ucode Model

SV-DECODE SV-EXEC
Design FunctionsSV-UCODE

SV-XLATE

SV-USEQ SV-EXECSV-EXEC

decode-
correctness

uop specs

exec-correctness

...
uAND-spec == uAND
uJE-spec == uJE
uSHR-spec == uSHR
...

SHRD-decode-spec
==
..111110101100..

 shrd-opcode

Overview

x86 RTL in
SystemVerilog

DECODE

UCODE

XLATE
Scheduler,
Load/Store

EXECEXECEXEC

ACL2/VL/SV

x86isa Modelx86-decode
inst.lst

x86-exec

xlate/ucode-correctness

USEQ

Ucode Model

SV-DECODE SV-EXEC
Design FunctionsSV-UCODE

SV-XLATE

SV-USEQ SV-EXECSV-EXEC

decode-
correctness

uop specs

exec-correctness

...
uAND-spec == uAND
uJE-spec == uJE
uSHR-spec == uSHR
...

SHRD-exec-spec
==
compose-uops-exec-specs

SHRD-decode-spec
==
..111110101100..

 shrd-opcode

5

Proof Methodology

• Goal: prove that design functions are consistent with the x86 ISA model.

• Strategy: decompose the problem into proving three kinds of lemmas.
1. decode-correctness
2. exec-correctness
3. xlate/ucode-correctness

• All proofs are done using the ACL2 theorem prover.

- Consistent composition of intermediate results.

• Use GL library in ACL2 to translate each lemma into a propositional
formula for bit-blasting using SAT, BDDs, and AIG rewriting.

- Speed up and automate these proofs.

• Decomposition:
- Case splits due to parsing of the byte sequence (e.g., prefix bytes).
- A few thousand cases across all opcodes verified in parallel on

multiple machines. Each case takes ~5-10s using GL/SAT.

• Challenges:
- Scale: ~3400 x86 instructions.

- Complex hardware design: queues, feedback loops, etc.
‣ Assumption: start from a generalized state with constraints that

ensure no interference or impedance to the instruction's execution.

• New at Centaur: Verified all supported
 instructions for the most recent project.

6

1) decode-correctness

• Decomposition: uop-specific (e.g., near/far paths for FP adders).

• Challenge: No standardized behavior — uop specifications obtained
by talking to logic designers.

• Improved ongoing work at Centaur:
- We now consider all uops dispatched to execution units.

‣ ~600 uops in the most recent project.

- Scope of proofs lifted to the same top-level execution unit.
‣ Less susceptible to changes in internal modules.

7

2) exec-correctness

SV-EXECSV-EXECSV-EXEC

uop specs

8

3) xlate/ucode-correctness

x86-exec

Ucode Model

SV-UCODE

SV-XLATE
SV-USEQ uop specs

• Decomposition: Pick a legal instruction corresponding to a fixed
set of uop operations — reason about one ucode program at a time.

- Operations fixed; other fields (e.g., register indices) symbolic.

• Challenge:
- Uop programs: microcode ROM can have arbitrary-length

programs with jumps and loops.
‣ Use software verification techniques.

• Improved ongoing work at Centaur:
- We consider both prelude and microcode uops; previously, we

focused on microcode uops only.
- This is work-in-progress; proofs of a small subset of

 instructions have been done so far.

Conclusions

9

• Summary:
- Enhanced our previous work of verifying EXEC blocks.
- Developed a framework to verify DECODE and XLATE/UCODE blocks.
- Composed these pieces to prove instruction implementations correct.

Conclusions

9

• Summary:
- Enhanced our previous work of verifying EXEC blocks.
- Developed a framework to verify DECODE and XLATE/UCODE blocks.
- Composed these pieces to prove instruction implementations correct.

• Found some bugs in all target design components:
- E.g.: translator produced incorrect source operand for a uop, illegal

byte sequence didn't throw an exception, etc.

Conclusions

9

• Summary:
- Enhanced our previous work of verifying EXEC blocks.
- Developed a framework to verify DECODE and XLATE/UCODE blocks.
- Composed these pieces to prove instruction implementations correct.

• Found some bugs in all target design components:
- E.g.: translator produced incorrect source operand for a uop, illegal

byte sequence didn't throw an exception, etc.

• Adopt a divide-and-conquer strategy:
- EXEC and DECODE units can be verified independently.
- Different proof strategies can be used for different modules.

Conclusions

9

• Summary:
- Enhanced our previous work of verifying EXEC blocks.
- Developed a framework to verify DECODE and XLATE/UCODE blocks.
- Composed these pieces to prove instruction implementations correct.

• Found some bugs in all target design components:
- E.g.: translator produced incorrect source operand for a uop, illegal

byte sequence didn't throw an exception, etc.

• Adopt a divide-and-conquer strategy:
- EXEC and DECODE units can be verified independently.
- Different proof strategies can be used for different modules.

• Immune to many RTL changes:
- No need to specify or understand instruction-to-uops translation.
- Immune to changes in microcode ROM, assembler, internal modules.

• We contribute to publicly-available ACL2 libraries.
- Formal verification of hardware in the industry is possible without

needing to purchase expensive license-only tools.

• Work-in-Progress/Future Work:
- Verify other parts of the processor:

‣ Memory operations (load/store), scheduler, etc.
- Increase coverage for xlate/ucode-correctness:

‣ Prove more instruction variants correct.
- Increase automation:

‣ Automatically prove the correctness of simple instructions.
‣ Automatically check that component lemmas cover all possible cases.

10

Conclusions (contd.)

CPP 2020

Shilpi Goel, Anna Slobodova, Rob Sumners, & Sol Swords
{shilpi,anna,rsumners,sswords}@centtech.com

Verifying x86 Instruction
Implementations

Formal Verif ication Team @ Centaur Technology

Questions?

