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Goal

• Broad Verification Objective: prove that Centaur’s processors 
correctly implement the x86 ISA. 

- Verification of all parts of the processor and microcode.

• Focus of this Talk: methodology for proving that Centaur’s 
processors execute an x86 instruction correctly.  

- Instruction decoding. 

- Translating a legal instruction to corresponding micro-
operations (uops). 

- Executing these uops.
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Proof Methodology

• Goal: prove that design functions are consistent with the x86 ISA model. 

• Strategy: decompose the problem into proving three kinds of lemmas.  
1. decode-correctness 
2. exec-correctness 
3. xlate/ucode-correctness 

• All proofs are done using the ACL2 theorem prover. 

- Consistent composition of intermediate results. 

• Use GL library in ACL2 to translate each lemma into a propositional 
formula for bit-blasting using SAT, BDDs, and AIG rewriting. 

- Speed up and automate these proofs.



• Decomposition: 
- Case splits due to parsing of the byte sequence (e.g., prefix bytes). 
- A few thousand cases across all opcodes verified in parallel on 

multiple machines. Each case takes ~5-10s using GL/SAT. 

• Challenges: 
- Scale: ~3400 x86 instructions. 

- Complex hardware design: queues, feedback loops, etc. 
‣ Assumption: start from a generalized state with constraints that 

ensure no interference or impedance to the instruction's execution. 

• New at Centaur: Verified all supported  
     instructions for the most recent project.
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1) decode-correctness



• Decomposition: uop-specific (e.g., near/far paths for FP adders). 

• Challenge: No standardized behavior — uop specifications obtained 
by talking to logic designers. 

• Improved ongoing work at Centaur: 
- We now consider all uops dispatched to execution units. 

‣ ~600 uops in the most recent project. 

- Scope of proofs lifted to the same top-level execution unit. 
‣ Less susceptible to changes in internal modules.
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2) exec-correctness
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3) xlate/ucode-correctness

x86-exec

Ucode Model

SV-UCODE

SV-XLATE
SV-USEQ uop specs

• Decomposition: Pick a legal instruction corresponding to a fixed 
set of uop operations — reason about one ucode program at a time. 

- Operations fixed; other fields (e.g., register indices) symbolic. 

• Challenge: 
- Uop programs: microcode ROM can have arbitrary-length 

programs with jumps and loops. 
‣ Use software verification techniques. 

• Improved ongoing work at Centaur: 
- We consider both prelude and microcode uops; previously, we 

focused on microcode uops only. 
- This is work-in-progress; proofs of a small subset of  

           instructions have been done so far.
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• Summary:  
- Enhanced our previous work of verifying EXEC blocks. 
- Developed a framework to verify DECODE and XLATE/UCODE blocks. 
- Composed these pieces to prove instruction implementations correct.

• Found some bugs in all target design components: 
- E.g.: translator produced incorrect source operand for a uop, illegal 

byte sequence didn't throw an exception, etc.

•  Adopt a divide-and-conquer strategy: 
- EXEC and DECODE units can be verified independently. 
- Different proof strategies can be used for different modules.

• Immune to many RTL changes: 
- No need to specify or understand instruction-to-uops translation. 
- Immune to changes in microcode ROM, assembler, internal modules.



• We contribute to publicly-available ACL2 libraries. 
- Formal verification of hardware in the industry is possible without 

needing to purchase expensive license-only tools. 

• Work-in-Progress/Future Work: 
- Verify other parts of the processor: 

‣ Memory operations (load/store), scheduler, etc. 
- Increase coverage for xlate/ucode-correctness: 

‣ Prove more instruction variants correct. 
- Increase automation: 

‣ Automatically prove the correctness of simple instructions. 
‣ Automatically check that component lemmas cover all possible cases.
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Conclusions (contd.)
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