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Software and Reliability
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Can we rely on our software systems?

Recent example of a serious bug:  

CVE-2016-5195 or “Dirty COW” 

• Privilege escalation vulnerability in Linux 

• E.g.: allowed a user to write to files intended to be read only 

• Copy-on-Write (COW) breakage of private read-only memory mappings 

• Existed since around v2.6.22 (2007) and was fixed on Oct 18, 2016
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Tools for Formal Software Verification

General-Purpose Tools 

- High overhead 
- Unrealistic models 

Misleading

• This research:  
General-purpose tool for formal software verification based on an 
accurate model of the x86 ISA 

• Make formal verification of machine code a practical choice

How do we increase software reliability?

Lower
Accurate

Reliable



Why x86 Machine-Code Verification?

• Why not high-level code verification? 

x���������	
��������������������  ���������	
��������������������  Sometimes, high-level code is unavailable (e.g., malware) 

x���������	
��������������������  ���������	
��������������������  High-level verification frameworks do not address compiler bugs 

✓ Verified/verifying compilers can help 

         x���������	
��������������������  ���������	
��������������������  But these compilers typically generate inefficient code 

x���������	
��������������������  Need to build verification frameworks for many high-level languages 

• Why x86? 

✓ x86 is in widespread use
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Approach 
1. Build a formal, executable model of the x86 ISA using ACL2 

2. Develop a machine-code analysis framework based on this model 
that supports reasoning about 
(a) application programs, and (b) system programs 

3. Employ this framework to verify 
(a) application programs, and (b) system programs

x860 x861

specify:  
in terms of states of 

computation

⤻
verify: 

reason about symbolic 
executions
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Focus of this talk: 
1. New features of the x86 ISA model 
2. (b) Libraries to reason about system  

 programs 
3. (b) Verification of a system program — 

    Zero-Copy [Diss. Ch. 12]

[Diss. Ch. 7]

[Diss. Ch. 10]

STATUS: THEN STATUS: NOW

x86 ISA Model 220 Opcodes 413 Opcodes

Lemma Libraries Support only for application 
programs

Support added for system 
programs

Case Studies Application programs Added system program 
(Zero-Copy)

Documentation Largely developer-focused 
topics

Added user-focused topics, 
including a guide to debug 

failed proofs



Our Framework: Design Goals

7

Accuracy 
Reliable program 
analysis



Our Framework: Design Goals

7

Execution Efficiency 
Aid in co-simulations 
and testing

Accuracy 
Reliable program 
analysis



Our Framework: Design Goals

7

Execution Efficiency 
Aid in co-simulations 
and testing

Reasoning Efficiency 
Reduce user effort, 
e.g., support failed 
proofs’ debugging

Accuracy 
Reliable program 
analysis



Our Framework: Design Goals

7

Execution Efficiency 
Aid in co-simulations 
and testing

Usability 
Balance verification 
effort and verification 
utility

Reasoning Efficiency 
Reduce user effort, 
e.g., support failed 
proofs’ debugging

Accuracy 
Reliable program 
analysis



Our Framework: Design Goals

7

Execution Efficiency 
Aid in co-simulations 
and testing

Usability 
Balance verification 
effort and verification 
utility

Reasoning Efficiency 
Reduce user effort, 
e.g., support failed 
proofs’ debugging

Accuracy 
Reliable program 
analysis

⦚⦚



Our Framework: Design Goals

7

Execution Efficiency 
Aid in co-simulations 
and testing

Usability 
Balance verification 
effort and verification 
utility

Reasoning Efficiency 
Reduce user effort, 
e.g., support failed 
proofs’ debugging

Accuracy 
Reliable program 
analysis

⦚⦚abstract stobjs



Our Framework: Design Goals

7

Execution Efficiency 
Aid in co-simulations 
and testing

Usability 
Balance verification 
effort and verification 
utility

Reasoning Efficiency 
Reduce user effort, 
e.g., support failed 
proofs’ debugging

Accuracy 
Reliable program 
analysis

⦚⦚ ⦚⦚abstract stobjs



Our Framework: Design Goals

7

Execution Efficiency 
Aid in co-simulations 
and testing

Usability 
Balance verification 
effort and verification 
utility

Reasoning Efficiency 
Reduce user effort, 
e.g., support failed 
proofs’ debugging

Accuracy 
Reliable program 
analysis

⦚⦚ ⦚⦚abstract stobjsmodes of operation



Outline

Overview 
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2. Lemma Libraries for Machine-Code Verification 

3. Case Studies 

Concluding Remarks and Future Work
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Obtaining the x86 ISA Specification
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~3000 pages
~3400 pages

__asm__ volatile 
("stc\n\t"                   // Set CF. 
 "mov $0, %%eax\n\t"         // Set EAX = 0. 
 "mov $0, %%ebx\n\t"         // Set EBX = 0. 
 "mov $0, %%ecx\n\t"         // Set ECX = 0. 
 "mov %4, %%ecx\n\t"         // Set CL = rotate_by. 
 "mov %3, %%edx\n\t"         // Set EDX = old_cf = 1. 
 "mov %2, %%eax\n\t"         // Set EAX = num. 
 "rcl %%cl, %%al\n\t"        // Rotate AL by CL.  
 "cmovb %%edx, %%ebx\n\t"    // Set EBX = old_cf if CF = 1.  
                             // Otherwise, EBX = 0.  
 "mov %%eax, %0\n\t"         // Set res = EAX. 
 "mov %%ebx, %1\n\t"         // Set cf  = EBX. 
  
 : "=g"(res), "=g"(cf)    
 : "g"(num), "g"(old_cf), "g"(rotate_by)   
 : "rax", "rbx", "rcx", "rdx"); 

Running tests on x86 machines



x86 State
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Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and 
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table 
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table 
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as 
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical 
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel 

Figure 3-2.  64-Bit Mode Execution Environment
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Focus: Intel’s 64-bit mode
x860 x861

⤻

Source: Intel Manuals



Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or 
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment 
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage 
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses 
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information. 

Figure 2-2.  System-Level Registers and Data Structures in IA-32e Mode
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• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table 
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table 
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.
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User-level Mode 

• Verification of application 
programs 

• Linear memory address space     
(264 bytes) 

• Assumptions about correctness 
of OS operations 
- Specification of system calls

11

Modes of Operation of the x86 ISA Model

System-level Mode 

• Verification of system programs 

• Physical memory address space  
(252 bytes) 

- Specification of paging 

• No assumptions about OS 
operations 



Model Validation

How can we know that our model faithfully represents the x86 ISA? 

Validate the model to increase trust in the applicability of formal analysis

12
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2. Lemma Libraries for Machine-Code Verification 

3. Case Studies 
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Supporting Symbolic Execution
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Rules (theorems) describing interactions between these reads and writes 
to the x86 state enable symbolic execution of programs.

add %edi, %eax 
je  0x400304 

1. read instruction from mem 

2. read operands 

3. write sum to eax 

4. write new value to flags 

5. write new value to pc

1. read instruction from mem 

2. read flags  

3. write new value to pc
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y

linear 
memory

user-level mode

Program 
Order

i j

x

W(i,x)

R(j)=y

las-1 las-2 — lists of linear addresses

(defthm linear-mem-non-interference-user-level-mode 
  (implies  
   (and (disjoint-p las-1 las-2) 
        (user-level-mode x86)) 
   (equal 
    (read-mem las-1 r-x (write-mem las-2 bytes x86)) 
    (read-mem las-1 r-x x86))))



Reasoning about Paging is Complicated #1

16

1. Complicated data structures — hierarchical, with two to four levels of 
indirection, depending on the page configuration

PDPTE
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1. Complicated data structures — hierarchical, with two to four levels of 
indirection, depending on the page configuration
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PML4E

PDPTE

Reasoning about Paging is Complicated #2
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2. Accessed and dirty flag updates during paging structure traversals cause 
side-effect writes

CR3

1G Page

L0 L1 Offset

Linear Address

Paging entries 
governing the 
translation of a 
linear address are 
marked.

a

a d

Physical Address



Reasoning about Paging is Complicated #3
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3. Paging data structures are located in the physical memory 

- Physical memory cannot be accessed directly in the 64-bit mode — not 
even by supervisor-mode programs. 

- In order to access a paging entry, the entry’s own linear address needs to 
be translated to a physical address first.  

- Paging structures are mapped, too!
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Linear Memory Non-Interference Theorem
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(defthm linear-mem-non-interference-system-level-mode 
  (let* ((pas-1 (las-to-pas las-1 r-x (cpl x86) x86))   
        (pas-2 (las-to-pas las-2  :w (cpl x86) x86))) 
    (implies 
     (and 

      (disjoint-p pas-1 pas-2) 

      (disjoint-p pas-2 
                (paging-entries-paddrs las-1 x86))       

      (disjoint-p pas-1 
                (paging-entries-paddrs las-2 x86)) 
      (disjoint-p pas-1 
                (paging-entries-paddrs las-1 x86)) 

      (system-level-mode x86) 
      ;; <other simple hypotheses elided here...> 
      ) 
     (equal 
      (read-mem las-1 r-x (write-mem las-2 bytes x86)) 
      (read-mem las-1 r-x x86))))) 

las-1 las-2 — lists of linear addresses
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(defthm linear-mem-non-interference-system-level-mode 
  (let* ((pas-1 (las-to-pas las-1 r-x (cpl x86) x86))   
        (pas-2 (las-to-pas las-2  :w (cpl x86) x86))) 
    (implies 
     (and 

      (disjoint-p pas-1 pas-2) 

      (disjoint-p pas-2 
                (paging-entries-paddrs las-1 x86))       

      (disjoint-p pas-1 
                (paging-entries-paddrs las-2 x86)) 
      (disjoint-p pas-1 
                (paging-entries-paddrs las-1 x86)) 

      (system-level-mode x86) 
      ;; <other simple hypotheses elided here...> 
      ) 
     (equal 
      (read-mem las-1 r-x (write-mem las-2 bytes x86)) 
      (read-mem las-1 r-x x86))))) 

Complicates precondition discovery 

A large number of hypotheses makes it challenging to 
discover interesting and/or non-obvious preconditions. 

las-1 las-2 — lists of linear addresses
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• Common case: reads to fetch the next instruction or obtain program’s data 

- A program and its data are usually disjoint from system data structures 

- Why pay the penalty of side-effect A/D flag updates for these reads?
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• Common case: reads to fetch the next instruction or obtain program’s data 

- A program and its data are usually disjoint from system data structures 

- Why pay the penalty of side-effect A/D flag updates for these reads?

• Optimization: separate side-effect A/D flag updates from other updates

• Two sub-modes of operation: marking and non-marking mode 

- Marking Mode: true specification of the x86 ISA 

- Non-marking Mode: side-effect updates to A/D flags suppressed 
‣ Simpler theorems, easier precondition discovery



System-level Mode: Sub-modes of Operation
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• Non-marking mode: simpler theorems, easier precondition discovery 

• Modus Operandi: 

- First verify a program in the non-marking mode and then port it 
over to the marking mode 

• Caveat:  

- Works for programs that do not rely on side-effect A/D flag updates 

- Can always reason directly in the system-level marking mode
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(defthm linear-mem-non-interference-system-level-non-marking—mode 
  (let* ((pas-1 (las-to-pas las-1 r-x (cpl x86) x86))   
        (pas-2 (las-to-pas las-2  :w (cpl x86) x86))) 
    (implies 
     (and 

      (disjoint-p pas-1 pas-2) 

      (disjoint-p pas-2 (paging-entries-paddrs las-1 x86)) 

      (system-level-non-marking-mode x86) 

      ;; <other simple hypotheses elided here...> 
      ) 
     (equal 
      (read-mem las-1 r-x (write-mem las-2 bytes x86)) 
      (read-mem las-1 r-x x86))))) 

las-1 las-2 — lists of linear addresses
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In the system-level marking mode of operation:

• Memory reads disjoint from the paging data structures automatically ignore 
side-effect updates to A/D flags 

- Provided all the additional disjointness conditions are specified
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In the system-level marking mode of operation:

• Memory reads disjoint from the paging data structures automatically ignore 
side-effect updates to A/D flags 

- Provided all the additional disjointness conditions are specified

• Conditional Congruence-based Rewriting:  

- Rewrite read-mem to read-mem-alt if applicable; use congruence 
rules to allow read-mem-alt to ignore side-effect updates to A/D flags

• Program Comprehension:  

- Memory read operation in terms of read-mem: target is a paging entry 

- Memory read operation in terms of read-mem—alt: target is disjoint 
from paging structures



Outline

26

Overview 

1. Formal Model of the x86 ISA 

2. Lemma Libraries for Machine-Code Verification 

3. Case Studies 

Concluding Remarks and Future Work



27

xsrc

Linear  
Memory

xdst

x

Physical 
Memory

• Copies data by modifying the paging 
structures so that both the src and dst are 
mapped to the same physical memory location 

- Zero copies exist in reality 

- Can be used for implementing the Copy-
on-Write (COW) technique

Case Study: Zero-Copy Program

Map of Linear Memory to 
Physical Memory



27

xsrc

Linear  
Memory

xdst

x

Physical 
Memory

• Copies data by modifying the paging 
structures so that both the src and dst are 
mapped to the same physical memory location 

- Zero copies exist in reality 

- Can be used for implementing the Copy-
on-Write (COW) technique

• Establishing this program’s correctness is 
critical: 

- Linear memory is the only view of memory 
available to 64-bit x86 programs. 

- An incorrect setup of paging structures can 
cause security leaks and crashes in 
otherwise correct programs.

Case Study: Zero-Copy Program

Map of Linear Memory to 
Physical Memory



Constraints: 
- Data to be copied: 1GB 
- Source and destination are 1GB-aligned
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Key Challenge: 

Discovering and specifying the 
conditions under which this 
program operates correctly
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Proved Functional Correctness: implementation of a zero-copy program 
meets the specification of a simple copy operation. 

1. [Copy Occurs] The 1GB of data at the destination’s linear addresses in 
the final x86 state is the same as the 1GB of data at the source’s linear 
addresses in the initial x86 state. 

2. [Source is Unmodified] The 1GB of data at the source’s linear addresses 
in the final x86 state is the same as the 1GB of data at the source’s linear 
addresses in the initial x86 state. 

3. [Program is Unmodified] The program in the final x86 state is the same 
as that in the initial x86 state.
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Proved Functional Correctness: implementation of a zero-copy program 
meets the specification of a simple copy operation. 

1. [Copy Occurs] The 1GB of data at the destination’s linear addresses in 
the final x86 state is the same as the 1GB of data at the source’s linear 
addresses in the initial x86 state. 

2. [Source is Unmodified] The 1GB of data at the source’s linear addresses 
in the final x86 state is the same as the 1GB of data at the source’s linear 
addresses in the initial x86 state. 

3. [Program is Unmodified] The program in the final x86 state is the same 
as that in the initial x86 state.

Around 120 preconditions, mostly about the disjointness of different 
regions of the memory (e.g., program, data, stack, paging entries)
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modification to 
destination’s 
PDPTE for linear 
address re-
mapping

two copies of data

30View of Linear Memory

Case Study: Zero-Copy Program

not drawn to scale



Outline
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Overview 

1. Formal Model of the x86 ISA 

2. Lemma Libraries for Machine-Code Verification 

3. Case Studies 

Concluding Remarks and Future Work



Review

My Ph.D. proposal described: 
1. x86 ISA model 
2. (a) Libraries to reason about 

      application programs 
3. (a) Verification of two 

 application programs
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Focus of this talk: 
1. New features of the x86 ISA model 
2. (b) Libraries to reason about system  

 programs 
3. (b) Verification of a system program — 

    Zero-Copy [Diss. Ch. 12]

[Diss. Ch. 7]

[Diss. Ch. 10]

STATUS: THEN STATUS: NOW

x86 ISA Model 220 Opcodes 413 Opcodes

Lemma Libraries Support only for application 
programs

Support added for system 
programs

Case Studies Application programs Added system program 
(Zero-Copy)

Documentation Largely developer-focused 
topics

Added user-focused topics, 
including a guide to debug 

failed proofs



Contributions

Formal, executable specification of the x86 ISA (IA-32e mode) 
- Accurate reference of the x86 ISA 
- Fastest formal simulator of its kind 
- Tools that support its use as a practical instruction-set simulator 

Reasoning framework for x86 machine-code analysis 
- Automated symbolic simulation of x86 machine-code programs 
- Supports reasoning about system data structures 

Verification strategies that can be adopted to verify a variety of machine-
code programs 

Documentation of engineering aspects of building a large-scale formal 
analysis framework
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Opportunities for Future Research

34

Operating System Verification 

detect reliance on non-portable or 
undefined behaviors

User-friendly Program Analysis 

automate the discovery of 
preconditions

Multi-process/threaded Program 
Verification 

reason about concurrency-related 
issues

Reasoning about the Memory   
System 

determine if caches are (mostly) 
transparent, as intended

Firmware Verification 

formally specify software/hardware 
interfaces

Micro-architecture Verification 

x86 ISA model serves as a build-to 
specification
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Thanks!

[Source Code] 
Github

[Documentation] 
x86isa in the ACL2+Community Books Manual

https://github.com/acl2/acl2/tree/master/books/projects/x86isa
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA


Extra Slides
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Functional Correctness: 
RAX = popcount(v)

specification function

popcount(v): [v: unsigned int] 
if (v <= 0) then 
   return 0 
else 
   lsb := v & 1 
   v   := v >> 1 
   return (lsb + popcount(v)) 
endif

popcount_64: 
89 fa                mov    %edi,%edx 
89 d1                mov    %edx,%ecx 
d1 e9                shr    %ecx 
81 e1 55 55 55 55    and    $0x55555555,%ecx 
29 ca                sub    %ecx,%edx 
89 d0                mov    %edx,%eax 
c1 ea 02             shr    $0x2,%edx 
25 33 33 33 33       and    $0x33333333,%eax 
81 e2 33 33 33 33    and    $0x33333333,%edx 
01 c2                add    %eax,%edx 
89 d0                mov    %edx,%eax 
c1 e8 04             shr    $0x4,%eax 
01 c2                add    %eax,%edx 
48 89 f8             mov    %rdi,%rax 
48 c1 e8 20          shr    $0x20,%rax 
81 e2 0f 0f 0f 0f    and    $0xf0f0f0f,%edx 
89 c1                mov    %eax,%ecx 
d1 e9                shr    %ecx 
81 e1 55 55 55 55    and    $0x55555555,%ecx 
29 c8                sub    %ecx,%eax 
89 c1                mov    %eax,%ecx 
c1 e8 02             shr    $0x2,%eax 
81 e1 33 33 33 33    and    $0x33333333,%ecx 
25 33 33 33 33       and    $0x33333333,%eax 
01 c8                add    %ecx,%eax 
89 c1                mov    %eax,%ecx 
c1 e9 04             shr    $0x4,%ecx 
01 c8                add    %ecx,%eax 
25 0f 0f 0f 0f       and    $0xf0f0f0f,%eax 
69 d2 01 01 01 01    imul   $0x1010101,%edx,%edx 
69 c0 01 01 01 01    imul   $0x1010101,%eax,%eax 
c1 ea 18             shr    $0x18,%edx 
c1 e8 18             shr    $0x18,%eax 
01 d0                add    %edx,%eax 
c3                   retq

Case Study: Pop-Count Program



Case Study: Word-Count Program

• Program obtains input from the user via read system calls. 
• System calls are non-deterministic for application programs.
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 ncSpec(offset, str, count): 

  if (well-formed(str) && offset < len(str)) then 
     c := str[offset]  
     if (c == EOF) then 
        return count  
     else 
        count := (count + 1) mod 2^32 
        ncSpec(1 + offset, str, count)  
     endif 
  endif

Specification for counting the characters in str:

Functional Correctness Theorem:  
Values computed by specification functions on 
standard input are found in the expected memory 
locations of the final x86 state.
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Specification for counting the characters in str:

Functional Correctness Theorem:  
Values computed by specification functions on 
standard input are found in the expected memory 
locations of the final x86 state.

Resource Usage:  
-Program and its stack are disjoint for all inputs.  
-Irrespective of the input, program uses a fixed 

amount of memory.
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• System calls are non-deterministic for application programs.
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 ncSpec(offset, str, count): 

  if (well-formed(str) && offset < len(str)) then 
     c := str[offset]  
     if (c == EOF) then 
        return count  
     else 
        count := (count + 1) mod 2^32 
        ncSpec(1 + offset, str, count)  
     endif 
  endif

Specification for counting the characters in str:

Security: Program does not modify unintended 
regions of memory.

Functional Correctness Theorem:  
Values computed by specification functions on 
standard input are found in the expected memory 
locations of the final x86 state.

Resource Usage:  
-Program and its stack are disjoint for all inputs.  
-Irrespective of the input, program uses a fixed 

amount of memory.



modification to 
destination’s 
PDPTE for linear 
address re-
mapping

one (original) 
copy of data
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Zero-Copy: View of Physical Memory



Reasoning & Execution Efficiency: Abstract Stobjs

41

• Layered modeling approach mitigates the trade-off between reasoning 
and execution efficiency. 

• Abstract stobjs were added to ACL2 in response to the needs of this 
research project.

x86C

x86A

correspondence

supports

x86 Machine-Code Interpreter

Optimized for 
Reasoning Efficiency

Optimized for 
Execution Efficiency

x86 ISA Model



Review: Timeline

Spring 2015 − Summer 2015: Specifying more x86 instructions; modeling the system descriptor 
tables to support segmentation and interrupts; formulating and proving properties about paging data 
structure traversals and modifications 

Fall 2015: Choosing and simulating system program(s), such as an optimized data-copy program; 
this would identify the x86 features that need to be modeled in order to support the program’s 
execution and verification 

Spring 2016: Verification of the target program(s)—this includes discovering and specifying 
properties of interest; it may also involve re-visiting modeling choices made earlier 

Summer 2016 − Fall 2016: Dissertation writing and final defense

42

“

”

Adhered to the timeline envisioned in the proposal:

Data point: envisioning how long a verification effort will take is becoming 
predictable



➡ A formal, executable x86 ISA model (64-bit mode)

Formal Specification

➡ Executable file readers and loaders (ELF/Mach-O) 
➡ A GDB-like mode for dynamic instrumentation of machine code 
➡ Examples of program execution and debugging

Instruction-Set Simulator

➡ Helper libraries to reason about x86 machine code 
➡ Proofs of various properties of some machine-code programs

Code Proof Libraries

➡ Documentation

Manual

Deliverables

43



x86 ISA Model

Interpreter-Style Operational Semantics:  

- x86 State: specifies the components of the ISA 

- Instruction Semantic Functions: specifies instructions’ behavior 

- Step Function: fetches, decodes, and executes one instruction 

- Run Function: takes n steps or terminates early if an error occurs

44

x860 x861 x86k…
Step 1

A Run of the x86 Interpreter that executes k instructions

Step 2 Step k



Independence of Page Walks
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• Proved using congruence-based reasoning in ACL2 
- Define an equivalence relation that states that two x86 states are 

equivalent if their paging structures are equal, modulo the A and D 
flags, and the rest of the memory is exactly equal. 

- Prove that the x86 state produced by a page walk is equivalent to the 
initial x86 state. 

- A page walk returns the same physical address for a linear address, 
given equivalent x86 states.



Successive Linear Memory Reads
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(mv-nth 1 (rb las-1 r-x-1 
             (mv-nth 2 (rb las-2 r-x-2 x86)))) 
= 
(mv-nth 1 (rb las-1 r-x-1 
             <writes to A flags of las-2’s translation-governing entries>) 

The above expression can be simplified to 

(mv-nth 1 (rb las-1 r-x-1 x86)) 

only if physical addresses corresponding to las-1 are disjoint from the physical 
addresses of the translation-governing entries of las-2.

System-level Marking Mode



Successive Linear Memory Reads

47

(mv-nth 1 (rb las-1 r-x-1 
             (mv-nth 2 (rb las-2 r-x-2 x86)))) 
= 
(mv-nth 1 (rb las-1 r-x-1 x86)) 

because, in the non-marking mode: 

(mv-nth 2 (rb las-2 r-x-2 x86))) 
= 
x86

System-level Non-marking Mode



Reasoning about Paging is Complicated #3

48

3. Paging data structures are located in the physical memory 

- Physical memory cannot be accessed directly in the 64-bit mode — not 
even by supervisor-mode programs. 

- In order to access a paging entry, the entry’s own linear address needs to 
be translated to a physical address first.  

- Paging structures are mapped, too!
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Reasoning about Paging is Complicated #3

48

3. Paging data structures are located in the physical memory 

- Physical memory cannot be accessed directly in the 64-bit mode — not 
even by supervisor-mode programs. 

- In order to access a paging entry, the entry’s own linear address needs to 
be translated to a physical address first.  

- Paging structures are mapped, too!

la pa

PML4TE PDPTE PDE PTE

a a a a d

8 accesses

8 accesses 8 accesses 8 accesses 8 accesses

Total number of memory accesses: 40

Specification: Maximum number of memory accesses to 
translate one linear address with a 4K configuration


