
Formal Verification of
Application and System Programs

Based on a Validated x86 ISA Model
Ph.D. Final Defense

Shilpi Goel
shigoel@cs.utexas.edu

Department of Computer Science
The University of Texas at Austin

Software and Reliability

2

Can we rely on our software systems?

Recent example of a serious bug:

CVE-2016-5195 or “Dirty COW”

• Privilege escalation vulnerability in Linux

• E.g.: allowed a user to write to files intended to be read only

• Copy-on-Write (COW) breakage of private read-only memory mappings

• Existed since around v2.6.22 (2007) and was fixed on Oct 18, 2016

Point Tools

- Low overhead
- Limited scope

Restrictive

3

Tools for Formal Software Verification

General-Purpose Tools

- High overhead
- Unrealistic models

Misleading

How do we increase software reliability?

Point Tools

- Low overhead
- Limited scope

Restrictive

3

Tools for Formal Software Verification

General-Purpose Tools

- High overhead
- Unrealistic models

Misleading

How do we increase software reliability?

Lower
Accurate

Reliable

Point Tools

- Low overhead
- Limited scope

Restrictive

3

Tools for Formal Software Verification

General-Purpose Tools

- High overhead
- Unrealistic models

Misleading

• This research:
General-purpose tool for formal software verification based on an
accurate model of the x86 ISA

• Make formal verification of machine code a practical choice

How do we increase software reliability?

Lower
Accurate

Reliable

Why x86 Machine-Code Verification?

• Why not high-level code verification?

x���������	
�������������������� ���������	
�������������������� Sometimes, high-level code is unavailable (e.g., malware)

x���������	
�������������������� ���������	
�������������������� High-level verification frameworks do not address compiler bugs

✓ Verified/verifying compilers can help

 x���������	
�������������������� ���������	
�������������������� But these compilers typically generate inefficient code

x���������	
�������������������� Need to build verification frameworks for many high-level languages

• Why x86?

✓ x86 is in widespread use

4

Overview
Goal

Specify and verify properties of x86 application and system programs

5

Overview
Goal

Specify and verify properties of x86 application and system programs

5

x860 x861

specify:
in terms of states of

computation

Overview
Goal

Specify and verify properties of x86 application and system programs

5

x860 x861

specify:
in terms of states of

computation

⤻
verify:

reason about symbolic
executions

Overview
Goal

Specify and verify properties of x86 application and system programs

5

Approach
1. Build a formal, executable model of the x86 ISA using ACL2

2. Develop a machine-code analysis framework based on this model
that supports reasoning about
(a) application programs, and (b) system programs

3. Employ this framework to verify
(a) application programs, and (b) system programs

x860 x861

specify:
in terms of states of

computation

⤻
verify:

reason about symbolic
executions

Review

My Ph.D. proposal described:
1. x86 ISA model
2. (a) Libraries to reason about

 application programs
3. (a) Verification of two

 application programs

6

Review

My Ph.D. proposal described:
1. x86 ISA model
2. (a) Libraries to reason about

 application programs
3. (a) Verification of two

 application programs

6

Focus of this talk:
1. New features of the x86 ISA model
2. (b) Libraries to reason about system

 programs
3. (b) Verification of a system program —

 Zero-Copy

Review

My Ph.D. proposal described:
1. x86 ISA model
2. (a) Libraries to reason about

 application programs
3. (a) Verification of two

 application programs

6

Focus of this talk:
1. New features of the x86 ISA model
2. (b) Libraries to reason about system

 programs
3. (b) Verification of a system program —

 Zero-Copy [Diss. Ch. 12]

[Diss. Ch. 7]

[Diss. Ch. 10]

Review

My Ph.D. proposal described:
1. x86 ISA model
2. (a) Libraries to reason about

 application programs
3. (a) Verification of two

 application programs

6

Focus of this talk:
1. New features of the x86 ISA model
2. (b) Libraries to reason about system

 programs
3. (b) Verification of a system program —

 Zero-Copy [Diss. Ch. 12]

[Diss. Ch. 7]

[Diss. Ch. 10]

STATUS: THEN STATUS: NOW

x86 ISA Model 220 Opcodes 413 Opcodes

Lemma Libraries Support only for application
programs

Support added for system
programs

Case Studies Application programs Added system program
(Zero-Copy)

Documentation Largely developer-focused
topics

Added user-focused topics,
including a guide to debug

failed proofs

Our Framework: Design Goals

7

Accuracy
Reliable program
analysis

Our Framework: Design Goals

7

Execution Efficiency
Aid in co-simulations
and testing

Accuracy
Reliable program
analysis

Our Framework: Design Goals

7

Execution Efficiency
Aid in co-simulations
and testing

Reasoning Efficiency
Reduce user effort,
e.g., support failed
proofs’ debugging

Accuracy
Reliable program
analysis

Our Framework: Design Goals

7

Execution Efficiency
Aid in co-simulations
and testing

Usability
Balance verification
effort and verification
utility

Reasoning Efficiency
Reduce user effort,
e.g., support failed
proofs’ debugging

Accuracy
Reliable program
analysis

Our Framework: Design Goals

7

Execution Efficiency
Aid in co-simulations
and testing

Usability
Balance verification
effort and verification
utility

Reasoning Efficiency
Reduce user effort,
e.g., support failed
proofs’ debugging

Accuracy
Reliable program
analysis

⦚⦚

Our Framework: Design Goals

7

Execution Efficiency
Aid in co-simulations
and testing

Usability
Balance verification
effort and verification
utility

Reasoning Efficiency
Reduce user effort,
e.g., support failed
proofs’ debugging

Accuracy
Reliable program
analysis

⦚⦚abstract stobjs

Our Framework: Design Goals

7

Execution Efficiency
Aid in co-simulations
and testing

Usability
Balance verification
effort and verification
utility

Reasoning Efficiency
Reduce user effort,
e.g., support failed
proofs’ debugging

Accuracy
Reliable program
analysis

⦚⦚ ⦚⦚abstract stobjs

Our Framework: Design Goals

7

Execution Efficiency
Aid in co-simulations
and testing

Usability
Balance verification
effort and verification
utility

Reasoning Efficiency
Reduce user effort,
e.g., support failed
proofs’ debugging

Accuracy
Reliable program
analysis

⦚⦚ ⦚⦚abstract stobjsmodes of operation

Outline

Overview

1. Formal Model of the x86 ISA

2. Lemma Libraries for Machine-Code Verification

3. Case Studies

Concluding Remarks and Future Work

8

Obtaining the x86 ISA Specification

9

~3000 pages
~3400 pages

__asm__ volatile
("stc\n\t" // Set CF.
 "mov $0, %%eax\n\t" // Set EAX = 0.
 "mov $0, %%ebx\n\t" // Set EBX = 0.
 "mov $0, %%ecx\n\t" // Set ECX = 0.
 "mov %4, %%ecx\n\t" // Set CL = rotate_by.
 "mov %3, %%edx\n\t" // Set EDX = old_cf = 1.
 "mov %2, %%eax\n\t" // Set EAX = num.
 "rcl %%cl, %%al\n\t" // Rotate AL by CL.
 "cmovb %%edx, %%ebx\n\t" // Set EBX = old_cf if CF = 1.
 // Otherwise, EBX = 0.
 "mov %%eax, %0\n\t" // Set res = EAX.
 "mov %%ebx, %1\n\t" // Set cf = EBX.

 : "=g"(res), "=g"(cf)
 : "g"(num), "g"(old_cf), "g"(rotate_by)
 : "rax", "rbx", "rcx", "rdx");

Running tests on x86 machines

x86 State

10

Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Focus: Intel’s 64-bit mode
x860 x861

⤻

Source: Intel Manuals

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code
Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate
IST

XCR0 (XFEM)

x86 State

10

Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Focus: Intel’s 64-bit mode
x860 x861

⤻

Source: Intel Manuals

User-level Mode

• Verification of application
programs

• Linear memory address space
(264 bytes)

• Assumptions about correctness
of OS operations
- Specification of system calls

11

Modes of Operation of the x86 ISA Model

System-level Mode

• Verification of system programs

• Physical memory address space
(252 bytes)

- Specification of paging

• No assumptions about OS
operations

Model Validation

How can we know that our model faithfully represents the x86 ISA?

Validate the model to increase trust in the applicability of formal analysis

12

Outline

13

Overview

1. Formal Model of the x86 ISA

2. Lemma Libraries for Machine-Code Verification

3. Case Studies

Concluding Remarks and Future Work

Supporting Symbolic Execution

14

Rules (theorems) describing interactions between these reads and writes
to the x86 state enable symbolic execution of programs.

add %edi, %eax
je 0x400304

1. read instruction from mem

2. read operands

3. write sum to eax

4. write new value to flags

5. write new value to pc

1. read instruction from mem

2. read flags

3. write new value to pc

Linear Memory Non-Interference Theorem

15

y

linear
memory

user-level mode

Program
Order

i j

Linear Memory Non-Interference Theorem

15

y

linear
memory

user-level mode

Program
Order

i j

x

W(i,x)

Linear Memory Non-Interference Theorem

15

y

linear
memory

user-level mode

Program
Order

i j

x

W(i,x)

R(j)=y

Linear Memory Non-Interference Theorem

15

y

linear
memory

user-level mode

Program
Order

i j

x

W(i,x)

R(j)=y

las-1 las-2 — lists of linear addresses

(defthm linear-mem-non-interference-user-level-mode
 (implies
 (and (disjoint-p las-1 las-2)
 (user-level-mode x86))
 (equal
 (read-mem las-1 r-x (write-mem las-2 bytes x86))
 (read-mem las-1 r-x x86))))

Reasoning about Paging is Complicated #1

16

1. Complicated data structures — hierarchical, with two to four levels of
indirection, depending on the page configuration

PDPTE

PML4E

CR3

1G Page

L0 L1 Offset

Linear Address

Physical Address

Reasoning about Paging is Complicated #1

16

1. Complicated data structures — hierarchical, with two to four levels of
indirection, depending on the page configuration

PDE

PDPTE

PML4E

CR3

2M Page

L0 L1 L2 Offset

Linear Address

Physical Address

Reasoning about Paging is Complicated #1

16

1. Complicated data structures — hierarchical, with two to four levels of
indirection, depending on the page configuration

PTE

PML4E

PDPTE

PDE

CR3

4K Page

L0 L1 L2 L3 Offset

Linear Address

Physical Address

Reasoning about Paging is Complicated #1

16

1. Complicated data structures — hierarchical, with two to four levels of
indirection, depending on the page configuration

Source: Intel Manuals

Reasoning about Paging is Complicated #1

16

1. Complicated data structures — hierarchical, with two to four levels of
indirection, depending on the page configuration

Source: Intel Manuals

PML4E

PDPTE

Reasoning about Paging is Complicated #2

17

2. Accessed and dirty flag updates during paging structure traversals cause
side-effect writes

CR3

1G Page

L0 L1 Offset

Linear Address

Paging entries
governing the
translation of a
linear address are
marked.

a

a d

Physical Address

Reasoning about Paging is Complicated #3

18

3. Paging data structures are located in the physical memory

- Physical memory cannot be accessed directly in the 64-bit mode — not
even by supervisor-mode programs.

- In order to access a paging entry, the entry’s own linear address needs to
be translated to a physical address first.

- Paging structures are mapped, too!

Linear Memory Non-Interference Theorem

read_pa

write_pa

PDPTE

1G Page

read_la

CR3

write_la

PDPTE a

a

PML4E

PML4E

a

a

d

When is a linear memory read operation unaffected by a linear memory write operation?

system-level mode

19

Linear Memory Non-Interference Theorem

read_pa

write_pa

PDPTE

1G Page

read_la

CR3

write_la

PDPTE a

a

PML4E

PML4E

a

a

d

A and B are disjoint
A B

When is a linear memory read operation unaffected by a linear memory write operation?

system-level mode

19

Linear Memory Non-Interference Theorem

read_pa

write_pa

PDPTE

1G Page

read_la

CR3

write_la

PDPTE a

a

PML4E

PML4E

a

a

d

A and B are disjoint
A B

When is a linear memory read operation unaffected by a linear memory write operation?

system-level mode

19

Linear Memory Non-Interference Theorem

read_pa

write_pa

PDPTE

1G Page

read_la

CR3

write_la

PDPTE a

a

PML4E

PML4E

a

a

d

A and B are disjoint
A B

When is a linear memory read operation unaffected by a linear memory write operation?

system-level mode

19

Linear Memory Non-Interference Theorem

read_pa

write_pa

PDPTE

1G Page

read_la

CR3

write_la

PDPTE a

a

PML4E

PML4E

a

a

d

A and B are disjoint
A B

When is a linear memory read operation unaffected by a linear memory write operation?

system-level mode

19

Linear Memory Non-Interference Theorem

20

(defthm linear-mem-non-interference-system-level-mode
 (let* ((pas-1 (las-to-pas las-1 r-x (cpl x86) x86))
 (pas-2 (las-to-pas las-2 :w (cpl x86) x86)))
 (implies
 (and

 (disjoint-p pas-1 pas-2)

 (disjoint-p pas-2
 (paging-entries-paddrs las-1 x86))

 (disjoint-p pas-1
 (paging-entries-paddrs las-2 x86))
 (disjoint-p pas-1
 (paging-entries-paddrs las-1 x86))

 (system-level-mode x86)
 ;; <other simple hypotheses elided here...>
)
 (equal
 (read-mem las-1 r-x (write-mem las-2 bytes x86))
 (read-mem las-1 r-x x86)))))

las-1 las-2 — lists of linear addresses

Linear Memory Non-Interference Theorem

20

(defthm linear-mem-non-interference-system-level-mode
 (let* ((pas-1 (las-to-pas las-1 r-x (cpl x86) x86))
 (pas-2 (las-to-pas las-2 :w (cpl x86) x86)))
 (implies
 (and

 (disjoint-p pas-1 pas-2)

 (disjoint-p pas-2
 (paging-entries-paddrs las-1 x86))

 (disjoint-p pas-1
 (paging-entries-paddrs las-2 x86))
 (disjoint-p pas-1
 (paging-entries-paddrs las-1 x86))

 (system-level-mode x86)
 ;; <other simple hypotheses elided here...>
)
 (equal
 (read-mem las-1 r-x (write-mem las-2 bytes x86))
 (read-mem las-1 r-x x86)))))

Complicates precondition discovery

A large number of hypotheses makes it challenging to
discover interesting and/or non-obvious preconditions.

las-1 las-2 — lists of linear addresses

System-level Mode: Sub-modes of Operation

21

• Common case: reads to fetch the next instruction or obtain program’s data

- A program and its data are usually disjoint from system data structures

- Why pay the penalty of side-effect A/D flag updates for these reads?

System-level Mode: Sub-modes of Operation

21

• Common case: reads to fetch the next instruction or obtain program’s data

- A program and its data are usually disjoint from system data structures

- Why pay the penalty of side-effect A/D flag updates for these reads?

• Optimization: separate side-effect A/D flag updates from other updates

System-level Mode: Sub-modes of Operation

21

• Common case: reads to fetch the next instruction or obtain program’s data

- A program and its data are usually disjoint from system data structures

- Why pay the penalty of side-effect A/D flag updates for these reads?

• Optimization: separate side-effect A/D flag updates from other updates

• Two sub-modes of operation: marking and non-marking mode

- Marking Mode: true specification of the x86 ISA

- Non-marking Mode: side-effect updates to A/D flags suppressed
‣ Simpler theorems, easier precondition discovery

System-level Mode: Sub-modes of Operation

22

• Non-marking mode: simpler theorems, easier precondition discovery

• Modus Operandi:

- First verify a program in the non-marking mode and then port it
over to the marking mode

• Caveat:

- Works for programs that do not rely on side-effect A/D flag updates

- Can always reason directly in the system-level marking mode

Linear Memory Non-Interference Theorem

read_pa

write_pa

PDPTE

1G Page

read_la

CR3

write_la

PDPTE

PML4E

PML4E

A and B are disjoint
A B 23

When is a linear memory read operation unaffected by a linear memory write operation?

system-level non-marking mode

Linear Memory Non-Interference Theorem

read_pa

write_pa

PDPTE

1G Page

read_la

CR3

write_la

PDPTE

PML4E

PML4E

A and B are disjoint
A B 23

When is a linear memory read operation unaffected by a linear memory write operation?

system-level non-marking mode

Linear Memory Non-Interference Theorem

24

(defthm linear-mem-non-interference-system-level-non-marking—mode
 (let* ((pas-1 (las-to-pas las-1 r-x (cpl x86) x86))
 (pas-2 (las-to-pas las-2 :w (cpl x86) x86)))
 (implies
 (and

 (disjoint-p pas-1 pas-2)

 (disjoint-p pas-2 (paging-entries-paddrs las-1 x86))

 (system-level-non-marking-mode x86)

 ;; <other simple hypotheses elided here...>
)
 (equal
 (read-mem las-1 r-x (write-mem las-2 bytes x86))
 (read-mem las-1 r-x x86)))))

las-1 las-2 — lists of linear addresses

Reducing Reasoning Overhead in Marking Mode

25

In the system-level marking mode of operation:

• Memory reads disjoint from the paging data structures automatically ignore
side-effect updates to A/D flags

- Provided all the additional disjointness conditions are specified

Reducing Reasoning Overhead in Marking Mode

25

In the system-level marking mode of operation:

• Memory reads disjoint from the paging data structures automatically ignore
side-effect updates to A/D flags

- Provided all the additional disjointness conditions are specified

• Conditional Congruence-based Rewriting:

- Rewrite read-mem to read-mem-alt if applicable; use congruence
rules to allow read-mem-alt to ignore side-effect updates to A/D flags

Reducing Reasoning Overhead in Marking Mode

25

In the system-level marking mode of operation:

• Memory reads disjoint from the paging data structures automatically ignore
side-effect updates to A/D flags

- Provided all the additional disjointness conditions are specified

• Conditional Congruence-based Rewriting:

- Rewrite read-mem to read-mem-alt if applicable; use congruence
rules to allow read-mem-alt to ignore side-effect updates to A/D flags

• Program Comprehension:

- Memory read operation in terms of read-mem: target is a paging entry

- Memory read operation in terms of read-mem—alt: target is disjoint
from paging structures

Outline

26

Overview

1. Formal Model of the x86 ISA

2. Lemma Libraries for Machine-Code Verification

3. Case Studies

Concluding Remarks and Future Work

27

xsrc

Linear
Memory

xdst

x

Physical
Memory

• Copies data by modifying the paging
structures so that both the src and dst are
mapped to the same physical memory location

- Zero copies exist in reality

- Can be used for implementing the Copy-
on-Write (COW) technique

Case Study: Zero-Copy Program

Map of Linear Memory to
Physical Memory

27

xsrc

Linear
Memory

xdst

x

Physical
Memory

• Copies data by modifying the paging
structures so that both the src and dst are
mapped to the same physical memory location

- Zero copies exist in reality

- Can be used for implementing the Copy-
on-Write (COW) technique

• Establishing this program’s correctness is
critical:

- Linear memory is the only view of memory
available to 64-bit x86 programs.

- An incorrect setup of paging structures can
cause security leaks and crashes in
otherwise correct programs.

Case Study: Zero-Copy Program

Map of Linear Memory to
Physical Memory

Constraints:
- Data to be copied: 1GB
- Source and destination are 1GB-aligned

28

PDPTE

1G Page

0

Source Linear Address

PML4E

CR3

PML4E

0

Destination Linear Address

PDPTE

X

Case Study: Zero-Copy Program

Source and Destination
Physical Address

Constraints:
- Data to be copied: 1GB
- Source and destination are 1GB-aligned

28

PDPTE

1G Page

0

Source Linear Address

PML4E

CR3

PML4E

0

Destination Linear Address

PDPTE

X

X

Case Study: Zero-Copy Program

Source and Destination
Physical Address

Constraints:
- Data to be copied: 1GB
- Source and destination are 1GB-aligned

28

PDPTE

1G Page

0

Source Linear Address

PML4E

CR3

PML4E

0

Destination Linear Address

PDPTE

X

X

Case Study: Zero-Copy Program

Key Challenge:

Discovering and specifying the
conditions under which this
program operates correctly

Source and Destination
Physical Address

Proved Functional Correctness: implementation of a zero-copy program
meets the specification of a simple copy operation.

1. [Copy Occurs] The 1GB of data at the destination’s linear addresses in
the final x86 state is the same as the 1GB of data at the source’s linear
addresses in the initial x86 state.

2. [Source is Unmodified] The 1GB of data at the source’s linear addresses
in the final x86 state is the same as the 1GB of data at the source’s linear
addresses in the initial x86 state.

3. [Program is Unmodified] The program in the final x86 state is the same
as that in the initial x86 state.

29

Case Study: Zero-Copy Program

Proved Functional Correctness: implementation of a zero-copy program
meets the specification of a simple copy operation.

1. [Copy Occurs] The 1GB of data at the destination’s linear addresses in
the final x86 state is the same as the 1GB of data at the source’s linear
addresses in the initial x86 state.

2. [Source is Unmodified] The 1GB of data at the source’s linear addresses
in the final x86 state is the same as the 1GB of data at the source’s linear
addresses in the initial x86 state.

3. [Program is Unmodified] The program in the final x86 state is the same
as that in the initial x86 state.

Around 120 preconditions, mostly about the disjointness of different
regions of the memory (e.g., program, data, stack, paging entries)

29

Case Study: Zero-Copy Program

modification to
destination’s
PDPTE for linear
address re-
mapping

two copies of data

30View of Linear Memory

Case Study: Zero-Copy Program

not drawn to scale

Outline

31

Overview

1. Formal Model of the x86 ISA

2. Lemma Libraries for Machine-Code Verification

3. Case Studies

Concluding Remarks and Future Work

Review

My Ph.D. proposal described:
1. x86 ISA model
2. (a) Libraries to reason about

 application programs
3. (a) Verification of two

 application programs

32

Focus of this talk:
1. New features of the x86 ISA model
2. (b) Libraries to reason about system

 programs
3. (b) Verification of a system program —

 Zero-Copy [Diss. Ch. 12]

[Diss. Ch. 7]

[Diss. Ch. 10]

STATUS: THEN STATUS: NOW

x86 ISA Model 220 Opcodes 413 Opcodes

Lemma Libraries Support only for application
programs

Support added for system
programs

Case Studies Application programs Added system program
(Zero-Copy)

Documentation Largely developer-focused
topics

Added user-focused topics,
including a guide to debug

failed proofs

Contributions

Formal, executable specification of the x86 ISA (IA-32e mode)
- Accurate reference of the x86 ISA
- Fastest formal simulator of its kind
- Tools that support its use as a practical instruction-set simulator 

Reasoning framework for x86 machine-code analysis
- Automated symbolic simulation of x86 machine-code programs
- Supports reasoning about system data structures 

Verification strategies that can be adopted to verify a variety of machine-
code programs 

Documentation of engineering aspects of building a large-scale formal
analysis framework

33

Opportunities for Future Research

34

Operating System Verification

detect reliance on non-portable or
undefined behaviors

User-friendly Program Analysis

automate the discovery of
preconditions

Multi-process/threaded Program
Verification

reason about concurrency-related
issues

Reasoning about the Memory
System

determine if caches are (mostly)
transparent, as intended

Firmware Verification

formally specify software/hardware
interfaces

Micro-architecture Verification

x86 ISA model serves as a build-to
specification

Publications
Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann. Abstract Stobjs and Their
Application to ISA Modeling. In Proceedings of the ACL2 Workshop 2013,
EPTCS 114, pp. 54-69, 2013

Shilpi Goel and Warren A. Hunt, Jr. Automated Code Proofs on a Formal Model
of the x86. In Verified Software: Theories, Tools, Experiments (VSTTE’13),
volume 8164 of Lecture Notes in Computer Science, pages 222– 241. Springer
Berlin Heidelberg, 2014

Shilpi Goel, Warren A. Hunt, Jr., Matt Kaufmann, and Soumava Ghosh.
Simulation and Formal Verification of x86 Machine-Code Programs That Make
System Calls. In Proceedings of the 14th Conference on Formal Methods in
Computer-Aided Design (FMCAD’14), pages 18:91–98, 2014

Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann. Engineering a Formal,
Executable x86 ISA Simulator for Software Verification. In Provably Correct
Systems (ProCoS), 2015

35

Thanks!

[Source Code]
Github

[Documentation]
x86isa in the ACL2+Community Books Manual

https://github.com/acl2/acl2/tree/master/books/projects/x86isa
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA

Extra Slides

38

Functional Correctness:
RAX = popcount(v)

specification function

popcount(v): [v: unsigned int]
if (v <= 0) then
 return 0
else
 lsb := v & 1
 v := v >> 1
 return (lsb + popcount(v))
endif

popcount_64:
89 fa mov %edi,%edx
89 d1 mov %edx,%ecx
d1 e9 shr %ecx
81 e1 55 55 55 55 and $0x55555555,%ecx
29 ca sub %ecx,%edx
89 d0 mov %edx,%eax
c1 ea 02 shr $0x2,%edx
25 33 33 33 33 and $0x33333333,%eax
81 e2 33 33 33 33 and $0x33333333,%edx
01 c2 add %eax,%edx
89 d0 mov %edx,%eax
c1 e8 04 shr $0x4,%eax
01 c2 add %eax,%edx
48 89 f8 mov %rdi,%rax
48 c1 e8 20 shr $0x20,%rax
81 e2 0f 0f 0f 0f and $0xf0f0f0f,%edx
89 c1 mov %eax,%ecx
d1 e9 shr %ecx
81 e1 55 55 55 55 and $0x55555555,%ecx
29 c8 sub %ecx,%eax
89 c1 mov %eax,%ecx
c1 e8 02 shr $0x2,%eax
81 e1 33 33 33 33 and $0x33333333,%ecx
25 33 33 33 33 and $0x33333333,%eax
01 c8 add %ecx,%eax
89 c1 mov %eax,%ecx
c1 e9 04 shr $0x4,%ecx
01 c8 add %ecx,%eax
25 0f 0f 0f 0f and $0xf0f0f0f,%eax
69 d2 01 01 01 01 imul $0x1010101,%edx,%edx
69 c0 01 01 01 01 imul $0x1010101,%eax,%eax
c1 ea 18 shr $0x18,%edx
c1 e8 18 shr $0x18,%eax
01 d0 add %edx,%eax
c3 retq

Case Study: Pop-Count Program

Case Study: Word-Count Program

• Program obtains input from the user via read system calls.
• System calls are non-deterministic for application programs.

39

Case Study: Word-Count Program

• Program obtains input from the user via read system calls.
• System calls are non-deterministic for application programs.

39

 ncSpec(offset, str, count):

 if (well-formed(str) && offset < len(str)) then
 c := str[offset]
 if (c == EOF) then
 return count
 else
 count := (count + 1) mod 2^32
 ncSpec(1 + offset, str, count)
 endif
 endif

Specification for counting the characters in str:

Functional Correctness Theorem:
Values computed by specification functions on
standard input are found in the expected memory
locations of the final x86 state.

Case Study: Word-Count Program

• Program obtains input from the user via read system calls.
• System calls are non-deterministic for application programs.

39

 ncSpec(offset, str, count):

 if (well-formed(str) && offset < len(str)) then
 c := str[offset]
 if (c == EOF) then
 return count
 else
 count := (count + 1) mod 2^32
 ncSpec(1 + offset, str, count)
 endif
 endif

Specification for counting the characters in str:

Functional Correctness Theorem:
Values computed by specification functions on
standard input are found in the expected memory
locations of the final x86 state.

Resource Usage:
-Program and its stack are disjoint for all inputs.
-Irrespective of the input, program uses a fixed

amount of memory.

Case Study: Word-Count Program

• Program obtains input from the user via read system calls.
• System calls are non-deterministic for application programs.

39

 ncSpec(offset, str, count):

 if (well-formed(str) && offset < len(str)) then
 c := str[offset]
 if (c == EOF) then
 return count
 else
 count := (count + 1) mod 2^32
 ncSpec(1 + offset, str, count)
 endif
 endif

Specification for counting the characters in str:

Security: Program does not modify unintended
regions of memory.

Functional Correctness Theorem:
Values computed by specification functions on
standard input are found in the expected memory
locations of the final x86 state.

Resource Usage:
-Program and its stack are disjoint for all inputs.
-Irrespective of the input, program uses a fixed

amount of memory.

modification to
destination’s
PDPTE for linear
address re-
mapping

one (original)
copy of data

40

Zero-Copy: View of Physical Memory

Reasoning & Execution Efficiency: Abstract Stobjs

41

• Layered modeling approach mitigates the trade-off between reasoning
and execution efficiency.

• Abstract stobjs were added to ACL2 in response to the needs of this
research project.

x86C

x86A

correspondence

supports

x86 Machine-Code Interpreter

Optimized for
Reasoning Efficiency

Optimized for
Execution Efficiency

x86 ISA Model

Review: Timeline

Spring 2015 − Summer 2015: Specifying more x86 instructions; modeling the system descriptor
tables to support segmentation and interrupts; formulating and proving properties about paging data
structure traversals and modifications

Fall 2015: Choosing and simulating system program(s), such as an optimized data-copy program;
this would identify the x86 features that need to be modeled in order to support the program’s
execution and verification

Spring 2016: Verification of the target program(s)—this includes discovering and specifying
properties of interest; it may also involve re-visiting modeling choices made earlier

Summer 2016 − Fall 2016: Dissertation writing and final defense

42

“

”

Adhered to the timeline envisioned in the proposal:

Data point: envisioning how long a verification effort will take is becoming
predictable

➡ A formal, executable x86 ISA model (64-bit mode)

Formal Specification

➡ Executable file readers and loaders (ELF/Mach-O)
➡ A GDB-like mode for dynamic instrumentation of machine code
➡ Examples of program execution and debugging

Instruction-Set Simulator

➡ Helper libraries to reason about x86 machine code
➡ Proofs of various properties of some machine-code programs

Code Proof Libraries

➡ Documentation

Manual

Deliverables

43

x86 ISA Model

Interpreter-Style Operational Semantics:

- x86 State: specifies the components of the ISA

- Instruction Semantic Functions: specifies instructions’ behavior

- Step Function: fetches, decodes, and executes one instruction

- Run Function: takes n steps or terminates early if an error occurs

44

x860 x861 x86k…
Step 1

A Run of the x86 Interpreter that executes k instructions

Step 2 Step k

Independence of Page Walks

45

• Proved using congruence-based reasoning in ACL2
- Define an equivalence relation that states that two x86 states are

equivalent if their paging structures are equal, modulo the A and D
flags, and the rest of the memory is exactly equal.

- Prove that the x86 state produced by a page walk is equivalent to the
initial x86 state.

- A page walk returns the same physical address for a linear address,
given equivalent x86 states.

Successive Linear Memory Reads

46

(mv-nth 1 (rb las-1 r-x-1
 (mv-nth 2 (rb las-2 r-x-2 x86))))
=
(mv-nth 1 (rb las-1 r-x-1
 <writes to A flags of las-2’s translation-governing entries>)

The above expression can be simplified to

(mv-nth 1 (rb las-1 r-x-1 x86))

only if physical addresses corresponding to las-1 are disjoint from the physical
addresses of the translation-governing entries of las-2.

System-level Marking Mode

Successive Linear Memory Reads

47

(mv-nth 1 (rb las-1 r-x-1
 (mv-nth 2 (rb las-2 r-x-2 x86))))
=
(mv-nth 1 (rb las-1 r-x-1 x86))

because, in the non-marking mode:

(mv-nth 2 (rb las-2 r-x-2 x86)))
=
x86

System-level Non-marking Mode

Reasoning about Paging is Complicated #3

48

3. Paging data structures are located in the physical memory

- Physical memory cannot be accessed directly in the 64-bit mode — not
even by supervisor-mode programs.

- In order to access a paging entry, the entry’s own linear address needs to
be translated to a physical address first.

- Paging structures are mapped, too!

 linear memory

Reasoning about Paging is Complicated #3

48

3. Paging data structures are located in the physical memory

- Physical memory cannot be accessed directly in the 64-bit mode — not
even by supervisor-mode programs.

- In order to access a paging entry, the entry’s own linear address needs to
be translated to a physical address first.

- Paging structures are mapped, too!

la pa

PML4TE PDPTE PDE PTE

Specification: Maximum number of memory accesses to
translate one linear address with a 4K configuration

 linear memory

Reasoning about Paging is Complicated #3

48

3. Paging data structures are located in the physical memory

- Physical memory cannot be accessed directly in the 64-bit mode — not
even by supervisor-mode programs.

- In order to access a paging entry, the entry’s own linear address needs to
be translated to a physical address first.

- Paging structures are mapped, too!

la pa

PML4TE PDPTE PDE PTE

a a a a d

Specification: Maximum number of memory accesses to
translate one linear address with a 4K configuration

 linear memory

Reasoning about Paging is Complicated #3

48

3. Paging data structures are located in the physical memory

- Physical memory cannot be accessed directly in the 64-bit mode — not
even by supervisor-mode programs.

- In order to access a paging entry, the entry’s own linear address needs to
be translated to a physical address first.

- Paging structures are mapped, too!

la pa

PML4TE PDPTE PDE PTE

a a a a d

8 accesses

Specification: Maximum number of memory accesses to
translate one linear address with a 4K configuration

 linear memory

Reasoning about Paging is Complicated #3

48

3. Paging data structures are located in the physical memory

- Physical memory cannot be accessed directly in the 64-bit mode — not
even by supervisor-mode programs.

- In order to access a paging entry, the entry’s own linear address needs to
be translated to a physical address first.

- Paging structures are mapped, too!

la pa

PML4TE PDPTE PDE PTE

a a a a d

8 accesses

8 accesses 8 accesses 8 accesses 8 accesses

Specification: Maximum number of memory accesses to
translate one linear address with a 4K configuration

 linear memory

Reasoning about Paging is Complicated #3

48

3. Paging data structures are located in the physical memory

- Physical memory cannot be accessed directly in the 64-bit mode — not
even by supervisor-mode programs.

- In order to access a paging entry, the entry’s own linear address needs to
be translated to a physical address first.

- Paging structures are mapped, too!

la pa

PML4TE PDPTE PDE PTE

a a a a d

8 accesses

8 accesses 8 accesses 8 accesses 8 accesses

Total number of memory accesses: 40

Specification: Maximum number of memory accesses to
translate one linear address with a 4K configuration

