
INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

Automated Code Proofs on a Formal Model
of the X86

Shilpi Goel and Warren A. Hunt, Jr.

The University of Texas at Austin

May 18, 2013

1/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

AUTOMATIC BINARY PROGRAM VERIFICATION

SYMBOLIC EXECUTION

DEMO

CONCLUSION AND FUTURE WORK

2/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

AUTOMATIC BINARY PROGRAM VERIFICATION

SYMBOLIC EXECUTION

DEMO

CONCLUSION AND FUTURE WORK

3/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS

1. Develop an accurate model of the x86 Instruction Set
Architecture (ISA)

2. Develop automated procedures for reasoning about x86
machine code

4/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

WHY DO WE CARE?

I Analysis of high-level programs is not good enough.

I High-level programs are not always available.

I Formal verification of machine code!

I Formal model of the x86 ISA
I Reason about machine code on this model

5/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop a formal and executable model of the x86 ISA

I Accurate and unsimplified model

I Specifications: Intel’s Software Developer’s Manuals

I ~3000 pages of prose

I Co-simulations

I Need executability to do co-simulations

A single model for simulation and formal analysis enables
us to validate it with co-simulations so that we can trust it
for our proofs.

6/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, formal, and executable model of the
x86 ISA

2. Develop automated procedures for reasoning about x86
machine code

I Functional correctness of machine code

I Minimize lemma construction

7/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

AUTOMATIC BINARY PROGRAM VERIFICATION

SYMBOLIC EXECUTION

DEMO

CONCLUSION AND FUTURE WORK

8/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

AUTOMATIC BINARY PROGRAM VERIFICATION

SYMBOLIC EXECUTION

DEMO

CONCLUSION AND FUTURE WORK

9/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FORMALIZING X86 ISA IN ACL2

ACL2:

I A Computational Logic for Applicative Common Lisp

I Descendant of the Boyer-Moore theorem prover

I Programming language

I Mathematical logic

I Mechanical theorem prover

10/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FORMALIZING X86 ISA IN ACL2

I Our x86 ISA model has been formalized using an
interpreter approach to operational semantics.

I Semantics of a program is given by the effect it has on the
state of the machine.

I State-transition function is characterized by a recursively
defined interpreter.

11/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

X86 STATE

Component Description
registers general-purpose,

segment, debug, control,
model-specific registers

rip instruction pointer
flg 64-bit flags register
mem physical memory

12/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

RUN FUNCTION

Recursively defined interpreter that specifies the x86 model

run (n, x86):

if n == 0:
return (x86)

else
if halt instruction encountered:

return (x86)
else

run (n - 1, step (x86))

13/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

STEP FUNCTION

step (x86):

pc = rip (x86)

[prefixes, opcode, ... , imm] = Fetch-and-Decode (pc, x86)

case opcode:
#x00 -> add-semantic-fn (prefixes, ... , imm, x86)

... ...

#xFF -> inc-semantic-fn (prefixes, ... , imm, x86)

14/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

INSTRUCTION SEMANTIC FUNCTIONS

I INPUT: x86 state
Decoded instruction

OUTPUT: Next x86 state

I A semantic function describes the effects of executing an
instruction.

I Every instruction in the model has its own semantic
function.

15/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

X86 MODEL

I 64-bit mode

I Model entire 252 bytes (4096 TB) of memory

I All addressing modes

I Supports IA-32e paging

I 118 user-mode instructions (219 opcodes)

I +40,000 lines of code

16/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

AUTOMATIC BINARY PROGRAM VERIFICATION

SYMBOLIC EXECUTION

DEMO

CONCLUSION AND FUTURE WORK

17/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

EXECUTING BINARY PROGRAMS ON X86 MODEL

GCC/LLVM Compiler

Objdump, Shell Scripts,
Python

ACL2/Lisp
Constant

Memory

X86 State

Registers

Instruction
Pointer Flags

X86 Model in ACL2

X86 Run Function

X86 Step Function

X86 Instruction Semantic Functions

(d e f c o n s t * p r o g r a m - b i n a r y *
. . .)

Subset
Operation

Implemented Opcodes

Program
Opcodes

No --- implement
required opcodes

Yes

Real Machine

Machine State

Registers

Instruction
Pointer Flags

Memory

...

...

...

Co-simulation

Are program
opcodes a
subset of
implemented
opcodes?

Transform
Operation

State-by-State
Diff

GDB scripts,
Formatting
functions

ACL2 printing
functions

18/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

EXECUTING PROGRAMS ON X86 MODEL

I Execute a contemporary SAT solver on our model
I Produces exactly the same effects on model’s registers and

memory as those produced on the real x86 processor.

I Execution speed: 1

I Paging excluded: ~3.3 million instructions/second
I Paging included: ~300,000 instructions/second

I ACL2 has features that help us avoid trade-offs between
efficiency and reasoning.

1on an Intel Xeon CPU @ 3.50GHz
19/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

AUTOMATIC BINARY PROGRAM VERIFICATION

SYMBOLIC EXECUTION

DEMO

CONCLUSION AND FUTURE WORK

20/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

AUTOMATIC BINARY PROGRAM VERIFICATION

SYMBOLIC EXECUTION

DEMO

CONCLUSION AND FUTURE WORK

21/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

SYMBOLIC EXECUTION IN ACL2

I Symbolic Execution: Executing functions on symbolic
data

I GL: framework verified in ACL2 for proving theorems
involving finite symbolic objects via bit-blasting

I Symbolic object: any ACL2 object (like lists, numbers, etc.)

22/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

AUTOMATIC BINARY PROGRAM VERIFICATION

SYMBOLIC EXECUTION

DEMO

CONCLUSION AND FUTURE WORK

23/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

DEMO

Automatic correctness proof for an x86 popcount binary
program, for counting the number of non-zero bits in the

bit-level representation of an unsigned integer input.

24/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: SYMBOLIC EXECUTION APPROACH

I Write the program’s specification

I Prove that the program satisfies the specification (fully
automatic)

25/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: SYMBOLIC EXECUTION APPROACH

I No lemma construction needed — proof done fully
automatically

I Reason directly about semantics of programs
I Account for the complicated x86 decoding process

I Proofs of correctness of larger programs to be obtained
compositionally using traditional theorem proving
techniques

26/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

AUTOMATIC BINARY PROGRAM VERIFICATION

SYMBOLIC EXECUTION

DEMO

CONCLUSION AND FUTURE WORK

27/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CONCLUSION

I Executable, formal model of a significant subset of x86 ISA

I No simplification of the semantics of x86 instructions

I Validation of the x86 model using efficient co-simulation

I x86 model capable of running as well as reasoning about
real x86 binary programs

28/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FUTURE WORK

I Add system calls to enable reasoning about I/O (open,
read, write, etc.)

I Extend the model with more instructions

I Infrastructure for verification of linux utilities

29/30

INTRODUCTION X86 ISA MODEL AUTOMATIC BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

Automated Code Proofs on a Formal Model
of the X86

Shilpi Goel and Warren A. Hunt, Jr.

The University of Texas at Austin

May 18, 2013

Questions?

30/30

	Introduction
	X86 ISA Model
	X86 Instruction Interpreter
	Executing Programs on X86 Model

	Automatic Binary Program Verification
	Symbolic Execution
	Demo

	Conclusion and Future Work

